Chapter 2

”

2.1-1 Let us denote the signal in question by g(t) and its energy by E,. For parts (a) and (b)

2= 1 27 1 2w
E, = sintdt = = dt - = cosAdt=n+0=m
/] 2 [+] 2 1]

4w 1 4 4
(c) E,,:-./ sin"di:-—/ dt — - cos AAdt=n+0=7
2 2 2n 24

2 1 2 1 2
(d) Ey = / (2sin 1)? dt =4 [-,;/ dt — ;,-/ cos 2t dt] =47 +0]=4r
0 0 0

.

Sign change and time shift do not affect the signal energy. Doubling the signal quadruples its energy. In the
same way we can show that the energy of kg(t) is kK2E,.

2.1-2 (a) Ee= [C)%r =2 Ey= [f(1)%dt+ [(-1)%de=2

1 2
E,ﬂ,=/ (2)°dt = 4. Ex-y / (25%dr = 4
0 1

Therefore Ez3, = E- -~ E,.

2 2r w2 - An,2 ) 2=
(b)E, = / (l)zdfﬁ-/ (~=1)%dt = 2. Ey,= / (1)2d1+/ (—])’dr-_t-/ (1)‘d1+/ 1-1)%t = 2x
Jo b ) Jwf2 -t JAni2

n/2 In/2 2%
Ez,,=/ (2)7dr+/ (0)’dr+/ (-1)%dt = 4r
0 "2 3m/2

Similaily. we can show that E._, = 47 Therefore Ex:, = E. + E,. We are tempted to conclude that L3y =
E. - E, in general. Let us see.

re/d ” ”
(c) 1-:,=j (1)2dr.+/ (-1)%dt == £,=/ (Nt ==
0 ” [+]

/4

n/4 Bl ~/4 ”
Eivy =/ (2)°dt +/ (0Pdt =7 Es-, =/ (0)%at +/ (=2)3dt = 3n
[<] n/4 [+] /4

Therefore. in general Ex+y # Ez + E,

2.1-3
1 To 2 2 c? To
= o ’ t+0)dt = — 2wot + 28)] dt
Py To/o C* cos*{wot + ) d T J, {1 + cos (2wot + 26)]
C'I To To . C2 _ C?
=7 [/o dt -t-L cos (2wot + 26) dt| = E-,,—,;[To+0]-— 5

2.1-4 This problem is identical to Example 2.2b. except that w; # wa2. In this case. the third integral in P (see p. 19
is not zero. This integral is given by

aevca [T
Iy = lim 26 ‘/ ¢os (wit + 1) cos (wit + 82) dt

T—

T T/2
T/2 T/2
= lim Q_Q [/ cos{6) — 2) dt +/ cos(2unt + 0y + 62) dt
T—n -T;2 172

CiCy
T—=~n T

[T cos(f) - M)} + 0= C1C2 cos(fy — 62)




Therefore

—8

P, = =% + =% + C1C2cos(by - 62)
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2.1-5
] 2 32 1 2 3.2 .
Py= = (17Y2dt = 64/7 (8) Py =~ (—t*)%dt = 64/7
4/, 4/,
1 [? 12
(b) P2y = Z/ (an)zdt = 4(64/7) = 256/7 (€) Peg = Z/ (,,t-")zdt = 64c% /7
-2 -2

Sign change of a signal does not affect its power. Multiplication of a signal by a constant ¢ increases the power
by a factor =

2.1-6 »
_1 T2 g, L L by Yo -
(a) Pg—ﬂA(f‘ )dr-ﬂ/ov dt-—ﬂ[l e 7
1 ” 2 1 n/2
(b) P, =5 / wi(t)dt = — / dt = 0.5
2 f_ . 8 J_ep2
, To/2 To/2
(© Po=gx Wt de == [ a=1
0 J_1¢/2 o J_Tp/2
d) Py= l/ (£1)tdt =1
14/
2n "
1 t\* 1
© P=3 | (21._) dt=3
2.1-7

1 T/ 1 T/2 "™ " (o mwnt
po=jim 3 [ atnatinas jim 7 D 3D 3L

T~ Ti2 =T/2 g=m r=m

The integrals of the cross-product terms (when k # r) are finite because the integrands are periodic signals
(inade up of sinusoids). These terms. when divided by T — oo. vield zero. The remaining terms (k = ) yield

T/I2 n n
_ope 4 2 4, _ 2
P“",JE'LT/ E | Dy " dt = E |Dl

“T/2 k=m k=m

2.1-8 (a) Power of a sinusoid of amplitude C is C?*/2 |Eq. (2.6a)] regardless of its frequency (w # 0) and phase.
Therefore. in this case P = (10)%/2 = 50.
(b) Power of a sum of sinusoids is equal to the sum of the powers of the sinusoids |[Eq. (2.6b)]. Therefore, in

this case P = U3 + 08° =178,
(c) (10 + 2 sin 3t) cos 10t = 10cos 10¢ + sin 13t — sin 3t. Hence from Eq. (2.6b) P = Qgﬁ +3+ 3 =350
(d) 10 cos 3t cos 10t = 5(cos 5t + cos 15t. Hence from Eq. (2.6b) P = (—22)-2- + %ﬁ = 23.

(c) 10sin 5tcos 10t = 5(sin 15¢ — sin 5t. Hence from Eq. (2.6b) P = ng + -‘;;ﬁ = 25.
(f) ~°' coswot = % [r-"°*~°>' + eft@==0)t]. Using the result in Prob. 2.1-7. we obtain P = (1/4) +(1/4) = 1/2.
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For imaginary a. let a = j7. Then

2.2-1 For arealn
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Fig. $2.3-2
Clearly. if o is veal. ¢~ is neither energy not power signal. However. if a is imaginary, it is a power signal with
power 1.

2.3-1
@) =gt —1)+q:(t=1). ga(t)=g(t - D+glt+1), gft)=glt- 0.5) + g1 (t + 0.5)

The signal gs{t) can be obtained by (i) delaying g(f) by 1 second (replace t with t — 1), (ii) then time-expanding
by  factor 2 (replace t with t/2). (iii) then raultiply with 1.5. Thus gs(t) = 1.59(% -1).

2.3.2 All the signals are shown in Fig. 52.3-2.

2.3-3 Al the signals are shown in Fig. 52.3-3
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2.3-4
I:'..y=/ [—g(:)]’m=/ g*(t)dt = E,. E,(-,,=/ (g(—t))2dz=/ lz)dr = Eg
o - w -t - -
n . R Y L %) 1 e
Ege-m = / ot = T2 dt = / ¢*(r)dr = E;.  Egan = / lo(at)}? dt = = / 9*(z)dz = Eg/0

v ] ~ ", ~J N
Egat-6),= / lgtat — W2 dt = - / g {r)de = Egfe. Egra) = / [,q(t/a)]2 dt = a/ g’(7)dt = aEy

Eag(ey = / [ng(i)]e dt = a=/ ge(f)dt = azﬁ'g
2.4-1 Using the fact that g(7)¢(r) = g(0)d(r). we ha‘vc
(a) 0 (b) §(w) (c) iar) (d) —36(t-1) {e) Zadlw+3) () ké{w) (use L’ Hopital's rule)

2.4-2 In these problems remember that impulse #() is located at z = 0. Thus. an impulse #(t —7) is located at 7 = 1.

and so on.
(a) The impulse is located at v =1 and g(7) at 7 =t is g(t). Therefore

3




2.4-3

2.5-1

2.

2.

(&

5-2

5-3

.5-4

/ a(r)d{t = T)dr =g(t)

(b) The impulse #{7) is at 7 =0 and g(t — 7) at 7 = 0 is g(t). Therefore

‘/-'1- 8(r)g(t — 7)dr = g(t)

-

Using similar arguments. we obtain
(€1 (@0 () (H5 (8)g(-1) (h) ~e?

Letting nt = 7. we aobtain (for a > 0)

f o(tandt = 3 / REICES Lo

bt N

Similarly for a < 0, we show that this integral is —%¢(0). Therefore

o(t)d(at) dt = —&(0) = — o()6(t) dt
L, hian)dt = g8(0) = 17 | o0
Therefore
1.,
b(at) = —48(t
) ] )
Trivial. Take the derivative of {e!? with respect to r and equate it to zero.

(a) In this case E; = [, dt = 1. and

1 mn 1 !
o= E/o g{f}:r(!)dt:;A tdt = 0.5

(b) Thus. g{t} = 0.57(t). and the error e(t)=t~05o0ver (0t < 1). and zero outside this intervai. Also Eg
and E. (the energy of the ervor) are

1 1 1
E,-_-/ 92(f)¢lt=/ t2dt =1/3 and £,=/ (t —0.5)%dt =1/12
0 0 0

The error (t — 0.5) is orthogonal to r(f) because

3
/ (t — 0.5)(1)dt =0
4]

Note that E, = *E. + E.. To explain these results in terms of vector concepts we observe from Fig. 215
that the error vector e is orthogonal to the component X. Because of this orthogonality, the length-square of
g lenergy of g(1)] is equal to the sum of the square of the lengths of cx and e [sumn of the energies of er(t) and

o(n).
In this case E, = [} g(1dt = [J 2 dt = 1/3. and

1 H
c_—__]-/ ;r(t)g(t)df.—.(i/ tdt=15
Ey i} [}

Thus. (t) = 1.5¢(¢). and the error e(t) = (1) — 1.59(t) = 1 ~ 1.5t over (0 < ¢t < 1). and zero outside this
interval. Also E. (the energy of the error) is Ee = fol(l - 1.5t)2dt = 1/4.

(a) In this case E; = [, sin®2rtdt = 0.5, and

1 1
o= —E%;,/o .q(t).'c(f)dt:-o-l.g/0 tsin 2mtdt = ~1/w

(b) Thus. g(t) = —(1/a)x(t). and the error e(t) = t + (1/7)sin 2nt over (0 <t < 1). and zero outside this
interval. Also E, and E. (the cnergy of the error) are

4
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2.5-5

2.5-6

1 1 1
1

Eg= / () dt = / t?dt=1/3 and E. =/ [t - (1/m)sin 2mt]? dt = % - 53

o Jo ° "
The error [t + (1/7)sin 27t} is orthogonal to z(t) because

3
/ sin 2rt(t + (1/7)sin 2xt]dt =0
0

Note that Eg = ¢2E, + E.. To explain these results in terms of vector concepts we observe from Fig. 2.15 that
the error vector e is orthogonal to the component cx. Because of this orthogonality, the length of f [energy of
g{t)] is equal to the sum of the square of the lengths of ¢x and e [sum of the energies of cx(t) and c(t)].

() If 7(t) and u(t) are orthogonal, then we can show the energy of x(t) £ y(t) is Ez + Ey.
/ () £ (O dt = /m jr () dt + jm w(t)®dt £ /~ z()y (1) dt £ / 2" (t)y(t) dt (1)
= [ ot [ o a @

The last result follows from the fact that because of orthogonality, the two integrals of the cross products
+(H)y"(t) and 7°(t)y(r) are zero [see Eq. (2.40)]. Thus the energy of =(t) + w(t) is equal to that of 7(f) - y(t) if
T(t) and n(7) are orthogonal.

(b) Using similar argument. we can show that the energy of c;r(t) + c2y(t) is equal to that of ryz(t) — cay(t) if
2(t) and y{t) are orthogonal. This energy is given by ]c;le,; + |(-2|25y.

(c)lfz(t) =r() = y(#). then it follows from Eq. (1) in the above derivation that

E.=E: + Ev + (E:y + Ey:)

g1(2.-1). g2(-1.2). ga(0.-2). g4(1.2). gs(2.1), and ge(3,0). From Fig. 52.5-6. we sec that pairs (83-86)-
(g:.84) and (g2.8s) are orthogonal. We can verify this also analytically.

'

G ot 3
Co

2

gig. $2.5-8

gr-gs=(0x3)+(-2x0)=0
g ga=(2x1)+(-1x2)=0
g g =(-1x2)+(2x1)=0

We can show that the corresponding signat pairs are also orthogonal.

/ " aa(anr) dt = / " a3 (0] dr = 0

~ -

‘/‘* gi1{t)ga{trdt = /~ [(27i(t) - ra()}[z1 (1) + 2r3(t)}dt =0

~ -

/Q‘ g2(1)gs(t) dt = /" [=x1(t) + 272(1)]{22: (1) + 72(1)]dt = O

- -~

[ |




In deriving these results, we used the fact that f::) 22dt = f_’; r3(t)dt = 1 and f_‘; (t)za{t)dt =0

2.6-1
We shall compute ¢, using Eq. {2.48) for each of the 4 cases. Let us first compute the energies of all the signals.

1
E,=/ sin?2xtdt = 0.5
0

In the same way we find Ey, = E,, = Egy = Eg, = 0.3.
Using Eq. (2.4R), the correlation coefficients for four cases are found as

1 1
1 I . = R e ] f o= —
(1) m ./(; sin 2ntsin dntdt =0 (2) m‘/o (sin 27¢)(~ sin 27t) dt 1

1

1 0.5
i = i tdt — 707sin 2ntdt| = 1.414
(3) m/; 0.707sin 27tdt =0  (4) m [‘/0- 0.707 sin 2ntdt /0.50 sin 27 ] 414/7

Signals r(t) and g2(t) provide the maximum protection against noise.
2.8-1 Here To = 2. so that wp = 27/2 = 7, and

L ¥
gty =ao0+ Za,. cosnnt + by sinnat -1<t<l
n=1
where
1 1 \n 1
1 2, _ 1 2 2 _4(-1 _2 2., _
nO—E/:lidt—-i. n,.=§/_licosmrldf_ e ml b,.—2 -1t sinnntdt =0
Therefore
1 4 = (=1)"
_q(t)=-§+;3£:l py: cosnwt -1<t<1
n=

Figure S2.8-1 shows gi1; = 12 for all f and the corresponding Fourier series representing g(t) over (-1.1).

g tt) , 2
1
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-3 | t=> -3

Fig. S2.8-1

The power of g(t) is

o 2 2 o~ n\ 2 ™
=c? Co _ (1Y 41 e\ 1, 8t 1 8]
Pg—C°+Z_2-—(§) +§Z(1r7n2 _9+1r‘z:n4—9+90~5
1 =l

(b) If the N-term Fourier series is denoted by x(¢). then

n
(nlz) cosnwt -1<t<1

4'V
=53

n=

()=

Wi

N=-1
1

The power P is required 10 be 99%Fy = 0.198. Therefore




For N = 1. P = 0.1111; for N = 2. P; = 0.19323, For N = 3. P. = 0.19837. which is greater than 0.198.
Thus. N = 3.

2.8-2 Here To = 27. so that wo = 27/27 = 1. and

g(f)=ao+2ancosnt+b,.sinm -n<tsw
n=1
where
~ " p P 2(-1 n+l
"'0'—"1’ tdt = 0, a..=—2- tcosntdt =0, b,.:-z— tsinmdt-_-...(_.._z_
27 J_. 2 J_, 2 J_. n
Therefore
o 1
1 ___2 — n4l 2 e ] _ <t <
g(1) (-1) Zlnsmm r<t<m
n=

Figure 52.8-2 shows g(t) = t for all t and the corresponding Fourier series to represent g(t) over (—=, m).
g ) PLed

LYt .
-'n: < t»

-yl

T
Fig. S2.8-2
The power of glt]) is
Py= o ’(t)adf—wz
e -3

\oreover. {1om Parseval's theorem {Eq. (2.90)]
—_— =17 _—— -
PIEEEID-Rt
1 1

(b} If the N-term Fourier series is denoted by r(t). then

IN
IA
N

z{t) = 2(- "'”Z—s-nn'rt -

n=l

The power P, is required to be 0.9 x -";- = 0.372. Therefore
N
For N =1 Py =2;for N = 2. Px-—25 for N =5, P, = 2.927, which is less than 0.37%2. For N =6, Pr =

2.9%25. which is greater rhan 0. 372 Thus. N =6.
2.8-3 Recall that

hal-
.al -~
||

To/2

a0 = = g(t)d (1a)
~To/2
To /2

an = —/ g(1) cos nwot dt (ib)
To/2
9 [To/2

by = = g(1) sin nwot dt {1c)

To -To/2

-
[




Recall also that cos nwol is an even function and sin nwot is an odd function of t. If g(t) is an even function of
t. then g{!)cos nwot is also an even function and g(t)sin nwot is an odd function of . Therefore (see hint)

2 To/2

no = —/ g(t) dt (2a)
To Jo
4 To/2

n = = / g() cos nwot dt (2b)
To Jo

b =0 (2¢)

Similarly. if g(t) is an odd function of t. then g(t) cos nwot is an odd function of t and g(t)sin nwot is an even
function of . Therefore

ap=0n=0 (3a)
4 To/2

b = —/ g(t) sin nwot dt (3b)
To Jo

Observe that. because of symmetry, the integration required to compute the coefficients need be performed over
only half the period.

2.8-4 (a) To=4. wo = % = %. Because of even symmetry, all sine terms are zero.

g(t) =ao+ Za,. cos (%I)

n=1

ao = 0 (by inspection)
1 2
4 n7n nw 4  rn
in= = cos (—r) dt — cos (——1) dt} = — sin =~
4 (/e 2 N 2 nrw 2

Therefore. the Fourier series for g{t) is

(f'—_(c)x_'-lc .3_ﬁ+1 s—m;_-l-os.zﬁ'...)
g)—ﬂ_ (52 3082 5COS C 2?

Here b, = 0. and we aliow C, to take negative values. Figure §2.8-4a shows the plot of Ca.

(b To = 107. wo = % = }. Because of even symmetry. all the sine terms are zero.

gty =ao0+ Zn., cos (%1) + by sin (%f)

n=1

agp = % (by inspection)
a -—3- ’cos(ﬁt) it = ! (5) i (P-t)’ —-?—Sill(ﬂ)
"7 om f_, 5 )% s \n SIMA\F Mon mn 5

L
T(2]—1r sin (%t) dt=0 (integrand is an odd function of t)
-

bn

Here b, = 0. and we allow Cn, to take negative values. Note that Cp=anforn=0123, - Figure 52.8-4b
shows the plot of Cn.
(c) To=2m. wo= 1.

~
g(t) = ao + Za,. cosnt + bpsinn?  with a0 =05 (by inspection)

LES

' 2m 2
t
an=l/ — cosntdt =0, bn=l/ -t—sinmdtz—-l—

T Jo 2% 7 Jo 27 Tn

and

g(t) =05~ (sinr + %sin‘li + %sinSt + ]Zsin:u + )

1
P

=0.5+-1- [cos(1+1)+lcos(2f+1)+lcos(3t+1)+=--]
T 2 2 2 3 2
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The reason for vanishing of the cosines terms is that when 0.5 (the dc component) is subtracted from g(?). the
remaining function has odd symmetry. Hence. the Fourier series would contain dc and sine terms only. Figure
$2.8-4c shows the piot of Cr and 5.

(d) To=7m.wo=2and g(t) = it

ap=0 (by inspection).

a, =0 (n>0) because of odd symmetry.

4 n/4 4
bp = = —tsin2ntdt = -2— (—2— sin T2 _cos ﬂ’-)
Tl ™ 7n \7Tn 2 2

4
gft) = %sin'_"o' %sin4f - §—1r—25in6t— al;sinSH—m

- 4 n 1 I 4 " 1 T
= - - - fe = | b —— t 4 - - -
7‘_,_,cos(’..’t 2)4-"('05(‘1' 2) +91r2cos(6 + 2)+ﬂ_cos(81+ 2)+

& f [\‘ (d\ az l‘[‘ (b3
\ ‘
P2 Gl 7 .
ol \'r\ 3‘“ “'l r \-J_Kfr.- a)_' ] - g ?.11\' & =»
-E ~‘~o .’ ‘? ¢ K S, /Oﬁb /’“fl



2.8-5

Figure S2.8-4d shows the plot of Cy, and 8,.
(e) To = 3. wo = 27/3.

2 ! 2w 3 27n  2#n 2nn
n= 3 { —t gt =2 —— — L Sip e — ]
a 3 /0 cos = dt I {cos T+ 553 ]

2 [! nr 2rn 2mn 2nn
by = = { SN ——=idt = - — —
h 3/0 Sin —=tdt = 5=y [sin 3 3~ C08 3 ]
Therefore Co = é and
3 / 472n? 2rn  4nn 2%n . ' - 228 ¢os 210 - sin 322
Cp = ———s 24 — 2008 S — e 5N - = tan” ) : 3 b
2n2n? [\ 9 5 3 "3 J and # an (cos 20 4+ dngindzn ]

(f) To = 6. wo = 7/3. ug = 0.5 (by inspection). Even symmetry; bn =

3
0n == 4 Q\'l)(‘OSﬂllf
"6y T 3

2 ! ns 2 nx
= - -— it -— o —t et
3 [/0 cos =3 d +/1 (2~t)cos 3 d

=9 [cosf—"—co 2"”]
L T3 s 3

'I‘h--O’w'i(coslt—gcosrf‘ 1cossw{ icc:sEl-lr---)
Ghh=ieT s 3 T Tt T 3

Observe 1hat even harmonics vanish. The reason is that if the dc (0.5) is subtracted from ¢(#). the resulting
function has half-wave symmetry. {See Prob. 2.8-6). Figure $2.8-4f shows the plot of Cn.

]

An cven function g.i1) and an odd function go{1) have the property that

§elt) = gel—t) and o(t) = —gol~t) m

Every signal g(t) can be expressed as a sum of even and odd components because
g(t) = }ialt) + g(=t)] + L {9(#) - g(~1)]

v
even odd

From the definitions in Eq. (1). it can be seen that the first component on the right-hand side is an even
function. while the second component is odd. This is readily seen from the fact that replacing ¢ by —1 in the
first component yields the same function. The same maneuver in the second component yields the negative of

that component.
To find the odd and the even components of g(t) = u(t). we have

9(t) = ge(t) + go(t)
where {from Eq. (1))
Ge(® = $ () + u(-0)] = 3
and

90(t) = } lu(t) = n(=1)l = Jsgn()
The even and odd components of the signal u(t) are shown in Fig. 52.8-5a.
Similarly. to find the odd and the even components of ¢(t) = e”%u(t), we have
g(t) = 9 (t) + qo(t)
where
ge(t) = % [F_”u(f) + r“u(—!)]
and

10




2.8-6

05| Del® 9,1lt)
, .5

(2

0'5 9‘_‘*) o .5 5’ L*)

(o] >
(o) -&5

Fig. 52.8-5

9(t) = 3} [r'—“u('.) - (:"‘u(—t)]

The even and odd components of the signal ¢™*u () are shown in Fig. $2.8-5b.
For g(t) = ''. we have

It = ge(t) + golt)

where

ge(t)y =3 [r'-" + n'j'] = cos t
and

golt) = 4 [ = e#] = jsint
(a) For half wave symmetry

o =-s(1= )

and

2 To 2 To/2 To
and p = —/ g{t) cosnwot dt = —-/ g(t) cos nwot dt +/ g(t) cos nwot dt
To Jo To Jo To/2

Let r = t — To/2 in the second integral. This gives

r r70/2 To/2.
D) 0 0/
n = -7':'- / g(t) cos nwot dt +/ [ (.-r + 22-9) €08 Nwo (:r + -1;2) d:r]
o |lJo o 2
2 r pTo/2 To/2
= e / q(t) cosnwot dt + / —g{z)|- cos nwoz} d.r]
To [Jo 0
P r rTo/2
= — / g(t) cos nwot dt
To LJ O

In a similar way we can show that
4 To/2
by = = g(t) sin nwot dt
o J,

(b) (i) To = 8. wo = 5. a0 =0 (by inspection). Half wave symmetry. Hence

11




fl

Py (cos% + %sin _r;_w - l) (n odd)

4 4 1 2y nw
an = 3 [/o (f)cos—-tdf] = 3 [/ -2-cosTtdt]
4
2
4

Therefore
Az (-1 n=15913"
an =
-y (FF+1) n=371L15"
Similarly

1 2y nr 4 nt nx nw 4 nrw
bp = -/ s sin—tdt = ——s (sin— - -'—-cos——) = —— 8in (—-) (n odd)
o nir n2r 2

2 2 4 2 2 2
and
— nn . nw
g(t) = IZ”, a, cOs -—4—t + by sin Tl

(i1) To = 27. wo = 1. a0 = 0 (by inspection). Half wave symmetry. Hence

e ¥

g(t) = z a,cosnt + by sinnt
n=13,5.

2 ”
p = -/ 10 cogmt dt
0
”

2 ',—t/IO ]
= -’? [m("ol cosnt + nsin 'nf)]o (1! Odd)

2 -n/10
=?[n~+001('” 001 01)]
2 - 0.0465
— »/10 - = ————
= Tormr s 000 V=00

.4
/ e~ 0ginntdt
(]
k.4

2 [ e-t/10 .
== [m(—o.lsmnt -n cosnt)]o (n odd)

and

E RS

[

_ 2n (=110 _ 1) = 1.461n
~ (n2+0.01) T 24001

2.9-1 (a) To=4d.wo=7/2. Also Do = 0 {by inspection).

1 X3
. = L o AT gy eI gy = 2 sin ni >1
= f_, ' - 2 =

(b) To = 107, wo = 27/10m = 1/5

e ¥ ” .
z 1 i J ( . nw) ) (mr)
= izt - — it g = S [ - Y= —« —
q(t) E Dne’37, where D, lOn_/,: e dt Trm 2jsin 5 po sin | 5

n=- "N




I r'- I ‘ ' | 1
- i LY. a»
y I ' iy QL ! 3 l 3 l
-7 -4 a 1
3 3 3 ‘5I - a2
90
o5 Th
S
TR AN~
'S 3 | 773 iy
Fig. 52.9-1
(<) -
int F- H
g(t) = Do + Z Dnc'™.  where. by inspection D¢ =0.5
2« : X 0
Da = -1—/ Loty = | sothat |Dal= 1 and D.= {3 e
2r fo 2m 27n 2mn 5 n<0
(d) To=7.wo=2and Dn=0
-~ n/4 -
g(t) = Z Dne'®™, where Dy = %‘/_”/4 ::Tfa"z"' dt = ;r—nj. (;2;'- sin 122- - €OS f—;)
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(e) To= K 2—.;'

st ) 1 ) 3 2 .
glt) = Z Da s S where n = %‘/; te~ i gt = yprsd [(- e o (‘72;" + 1) - 1]

r=o

Therefore
_ 3 [, 4m2n? 2rn  4mn . 2%n -1 22 cos 21 _ gin 252
|Dal = yrsEy { 2+ 3 —2cos—3———3-sm—3—- and {Dn = tan cosz—?+1§'—’sin%ﬂ—l

(f) To=6. w0 =7/3 Do =105

g(t) = 0.5+ Z Dy’

nem= - o

P
il

] -1 zxnt 1 pmne : jxnt 3 nw 2rn
b4 9 ""5— ""r - -‘1‘ 2 e——— ( —— _—)
6[_/_2 (t+2)e dt+/-1r' dt+/1 (=t +2)e df] o e cos 3 cos 3

15

3{¢ Cn 1D\
I - {3 []ees I
1 8

* -3-_5-!15'5 n->

© " @
D
o {@n ]1 hdal I
i 5'-1 - e 14 3 €
3 -5 ° n -»
* 1 LYy, l 5 { 1
>

Fig. S2.9-2

2.9-2
g(1) = 3cost + sin (5! - %) - 2cos (St - %)

For a compact trigonometric form. all terms must have cosine form and amplitudes must be positive. For this

reason. we rewrite g{f) as
g(t) = 3cost + cos (5t - % - %) + 2cos (St - % ~1r)

= 3cost + cos (St— -2—3{) + 2cos (8!— ﬂg-)

Figure $2.9-2a shows amplitude and phase spectra.

(b) By inspection of the trigonometric spectra in Fig. S8
§2.9-2b. By inspection of exponential spectra in Fig. $2.9-

2.9-2a, we plot the exponential spectra as shown in Fig.
2a, we obtain

9(t) = %(r“ +e7 )4 RICES. 2 p"l“'-’s")] + [,,J'<!=-=§=> + ,,—j(az—ss-)]

1
2
i () () d () ()
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2.9-3 (a)

o(t) = 2 + 2cos(2t — ) + cos(3t ~ %)
= 2 - 2cos2t + sin 3t

(b) The exponential spectra are shown in Fig. $2.9-3.
(c) By inspection of exponential spectra

g(t) =2+ [ 4 eI 4 % A LT

=2+2cos(2t—1r)+cos(3t—%)

(d) Observe that the two expressions (trigonometric and exponential Fourier series) are equivalent.

Fig. 52.9-3

2.9-4

1 To/2 To/2
Dp=— {/ f () cos nwot dt — j/ f(t)sin nwot dt]

To Ta/2 -To/2

If git) is even. the second term on the right-hand side is zero because its integrand is an odd function of 1.
Hence. D, is real. In contrast. if g{?) is odd. the first term on the right-hand side is zero because its integrand
is an odd function of . Hence. Dn is imaginary.




Chapter 3

/

3.1-1

3.1-2

3.1-3

G(w) = /'*- (e dt = /m g(t) coswit dt —j/ g(t)sinwtdt

—-— -

If g() is an even function of . g(t)sinwt is an odd function of t, and the second integral vanishes. Moreover,
g(t) coswt is an even function of t. and the first integral is twice the integral over the interval 0 to oc. Thus
when g(?) is even

Glw) = 2/“’ g(t) coswt dt (1)
0

Similar argument shows that when g(t) is odd

Glw)=-2j /mg(t)sinut dt (2)

0
If g(t) is also real (in addition to being even), the integral (1) is real. Moreover from (1)
G(-w)= 2/wg(t)cos.ut dt = G(w)
o

Hence G..) is real and even function of w. Similar arguments can be used to prove the rest of the properties.

~ A
q{t) = .9_1".‘/ G(..:)n-"" dw = E’l-;/ I(;(_‘,)!,.Jﬂy(-')‘,.‘uz do
- - R

~

=5‘;U Gl cost + Byt + [ lcunsin{mwg(w)lda]

Since IG(w)} is an cven function and 6,(w) is an odd function of w. the integrand in the second integral is an
odd function of «. and therefore vanishes. Moreover the integrand in the first integral is an even function of w.
and therefore

g{t) = -::‘/ |G (w)| coslwt + 0y(w)] dw
" Jo

For g(1) = r~**u(t), G(w) = gkz. Therefore IG(w)} = 1/V&T +a* and f,(w) = - tan~!(%). Hence

e L[ - (3))]
e = - cos |wl — tan = dw
T Jo w® + ac a

Glw) = / g(t)e 7" dt
Therefore -

G'(w):/ g ()™ dt
and

G (-w) = / g~ (e~ dt

-
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3.1-4 (a)

T T —(jw+a)T
G(hv') = / ﬂ-“(‘—jm dt = / e-(ju+°)‘ dt = _]..;-._c.—-J:-—a—-
4] L

jw+a
(b)
T T -(jw=—a)T
Gw) = / et dt = / e~ gy = l:—l’—(-J——)—
o Jo jw-a
3.1-5 (a)
! 2 42077 — 207N
Gw) = / 47t + / 20700 dt = -
o 1 Jw
(b)

° 4 _, T 2
G(w)=/ —;r”""‘di+/ —e = 7——2[c08;.:‘r+w1'sinw1’—l]
o T w

-r

This result could also be derived by observing that g(t) is an even function. Therefore from the result in Prob.

3.1-1
2 [ 2
Giw) = —/ tcoswtdt = ——;[cosu-r+w1'sinw‘r—ll
T Jo Tw
3.1-6 (a)
wo -t wo 2,2 _ : .
gt = = CEetde = L ———-(J —2 2wt +2 = ot 2) sin ot - 2wol 03 4ol
2 J 2 (jt1)° oo nt?
G (a3
2 G‘(uﬁ Gy twd
N i 3 Y
e =1 " 2 -2 Pe) 2 -\ o ¢

Fig. S3.1.6

(b) The derivation can be simplified by observing that G{w) van be expressed as a sum of two gate functions
G1{w) and Gz(w) as shown in Fig. $3.1-6. Therefore

2 2 ] . .
g(t) = L [Gi(w) + Ga(w))? dw = L It dw + O dw ) = sin2rtsint
r J_, 2n —2 1

b.44
3.1-7 (a)

®/2 '
g(f) = o= cosw @ duw
27 )2

piwt . . y®/2
= m {Jt cosw + Slﬂ‘.d}_.*/z
nt

= s (3)

(b)

w0

w( ) 4 /)
q(t) = -51:(-/ Cluye! dw = 2—17; [/ G(w)coswt dw +j/ G(w)sinwfdu]
Ex —wio - —wp

-d
Because G(w) is even function. the second integral on the right-hand side vanishes. Also the integrand of the

first term is an even function. Therefore
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3.1-8

1 [ w tw + twsin bw 140
q(f) = - — costwdw = _1_- [Sﬁ_‘d__?‘f—-—-—-]
T Jo wo wo t 0

[cos wot + wot sinwot — 1]

‘:T..:of2

(a)

1 o to gt 1 o t—t
ﬂ(i)=2_,r oWt pIw dw’—'—?”/ r-’w(-o)d,
—wo —o
wo .

sinwo(t —to) _ &0 sinclwo(t — to))

1 eJw(t-to)
w(t — to) ™

= @it - to)

(b)

L[[° Y e
'q(’) = 2—" / jt"’u dw +/ —jer dw
] o
]

1 pdwt 1 Lt wo 1 - coswo!
2t cwp 2mt o nt

£

-57 | ET + -

Fig. §3.3-1

3.2-1 Figure $3.2-1 shows the plots of various functions. The function in part (a) is a gate function centered at the

3.2-2

origin and of width 2. The function in part (b) can be expressed as A (‘1‘571) This is a triangle pulse centered

at the origin and of width 100/3. The function in part (c) is a gate function rect(}) delayed by 10. In other
words it is a gate pulse centered at t = 10 and of width 8. The function in part (d) is a sinc pulse centered
at the origin and the first zero occurring at 2 =nx,thatisat w = 3. The function in part (e) is a sinc pulse
sinc(3) delayed by 10%. For the sinc pulse sinc(¥§ ). the first zero occurs at ¢=nr thatisatw= 5n. Therefore
the function is a sinc pulse centered at w = 107 and its zeroe spaced at intervals of 57 as shown in the fig.
S3.2-1e. The function in part (f) is a product of a gate pulse (centered at the origin) of width 107 and a sinc
pulse (also centered at the origin) with zeros spaced at intervals of 57. This results in the sinc pulse truncated

beyond the interval 37 ([t} 2 5n) as shown in Fig. {.
The function rect (1 — 5) is centered at + = 3, has a width of unity. and its value over this interval is unity. Hence

5.5 1 ) )
- _'_-’[r-'J‘.SA - (,—-Jbbu]

~» >3 —jwt 1 . wt
Gluw) = e dt = ——=e¢""7
4 4

s Jv

4.3

eSO _ -j%w 4

= _._[!,JM/Q - r‘JU/?] - L—.— [2J sin :’-]
Jw Jw 2

= sinc (:;-) P

o

18
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3.2-3

3.2-4

3.2-5

3.3-1

10+% J 104w
edwt ; -
g() = — ANt = m— = ———— ! [e’(‘°+")‘ -0 ')']
27 Jio-w 27(jw) o, J27W
(,,1102

[2jsin=t) = sine(wt)e? 1%

j2rw

Observe that 1 + sgn(t) = 2u(t). Adding pairs 7 and 12 in Table 3.1 and then dividing by 2 yields the desired

result.
Ohserve that

cos (wot + 6) = % [(70t+9) 4 o ile0t+ O]

= L0 w0t | 1,=i0 —ient
0 S e

Fourier transform of the above equation yields the desired result.
(a)
1
u(t) = né(w) + —
Jw

2(2) Glw)

Application of duality property yields
ah(t) + —}- = 2nu(-w)
it N, st
20 2ng(-w)
or

AT

[6(2) + —1—-] = u{—~w)

jmt

Application of Eq. (3.28) vields

{b(—t) - .-I-l"':] &= u(w)

|-

But Alf: is an even function. that is #(~t) = 4(t). and

Ly + 4 e ulw
210(0) + L] o= u(w)
(b)

cos wot == T[d(w + wo) + Aw — wo)
N’ N e

o(t) G(w)

Application of duality property yields

n[8(t + wo) + (1 - “°L] =2 cos(—urgﬂ = 27 cos (wow)

CR:) ﬂrg?-u)
Setting wo = T yields
Bt +T)+08(t-T) < 2cos Tw
(c)

——

sin wol <= j7[#(w + wo) — d{w — w 1

o) G(w)

Application of duality property yields

Jrla(t + wo) = bt — wn)] == 27 sin{—wow) = —27 sin{wow)

G?t) 2ng(--w)

Setting wo = I yields
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8(t +T) - b(t — T) &= 2jsin Tw
3.3-2 Fig. (b) ¢1(t) = g(-1) and

Gi(w) =Gl-w) = ‘15['-’“ + jwe ™ = 1]
w

Fig. (¢) g2(1) = g(t = 1) + q1(? - 1). Therefore

Galw) = [Gw) + Gi())e ™7 = [Gw) + G(-w)je ™™

—jw

w2

{cosw + wsinw — 1)
Fig. (d) ga(t) = gt = 1) + (1 + 1)

Galw) = G(w)e ™ + G(~w)e?™

_ 1 . _4.2£_.2(i-_v')
_w7[2 2cos.u]—wzsm 5 =sinc” {3

Fig. (e) g4(t) = g(t = 3) + g1(t + }). and

Gs(w) = Glw)e ™% + Ci(w)e™?
(,_,I‘-’."2 ) (JW/2_ . e .
= 5 e = jwe!™ — 1) + —3 07 4 jwe T = 1
' w

1 ) . el w
:31--)51n§]—5111c 3

Fig. (f) gs(t] can be obtained in three steps: (i) time-expanding g(t) by 2 factor 2 {ii) then delaying it by 2
seconds. (iii} and multiplying it by 1.3 [we may interchange the sequence for steps (i) and (ii)}. The first step
(time-expansion by a factor 2) yields

! RN SISV W S L M
! (2) = 2G(2w) = 2‘)2(0 j2we 1)

Second step of time delay of 2 secs. yields

t=2 1 w . ] - 12w 1 . R
§(152) = gpte™ = joec™ = e = gl e )

The third step of multiplying the resulting signal by 1.5 yields

gs{t) =1.5f (f _2) o _.3_2.(] - 2w __(,-_12»:)

2 4w
]
14"-~\ ,_o ’," '
. l, 3
awr /
° ™ P ’/\ ° }?\// \
- S .
s‘ﬂt i (b) $)ﬂ(t‘v) L((t"v) cost l{ﬂ"&‘ ) oos (t‘E) Ulé-'é ) |

Fig. $3.3-3

3.3-3 (a)




;md

Glw) = Teine (4 ) [T/% - 2T/

2
= 2jTsinc %I) sin :"-22
= —“—sin2 £)
- 2

(b) From Fig. $3.3-3b we verify that
a(t) = sintu(t) -+ sin{t — m)u(t - )

Note that sin(t — 7)u(t ~ «) is sin t u(t) delayed by 7. Now. sintu(t) &= -2'-';[6(“) - 1) =b(w+1))+ g~ and

. T 1 —-JTw
sin(t — 7)u{t - 1) &= {E[b(u -1 -bw+1)]+ — }e™?
Therefore
1

1-w

G(w’):{%[b(d—])—b(u-{- 1)]+ }(1+C—J”U)

Recall that g(r)8(r ~ 7o) = ¢(70)A(7 — 70). Therefore 4(w 1)(1+ ¢7?"™) = 0. and

1
1—w?

Glu)= (L+e72")

(c) From Fig. $3.3-3¢c we verify that

e

g(t) = cost [u(f) - (f - %)] = costu(t) — costu (f - _12r_

But sin(t — §) = —cost. Therefore

glt) = costu(t) +sin (' - %) u (f - E)

et . _ . 1 -1’2
+{2j(h(.~ 1) - 8(w+ 1)+ 1—1.-2}0

Jw
1 - w2

Glw) = Z[Aw = 1)+ Alw + 1] +

Also hecause ¢(r)8(r ~ ro) = glro)t(r — ro).

Mux e ™ = bwt Nt = 2jo(u k1)

Therefore

P—jwu/?

= "J*"‘/zl
1-uw? 1

R L 1 .
G(.u)—] 7+ _d2[1u+o

- W

(d)

gty =" hu(t) —u(t - T)} = e~ Mult) —e" Mu(@ - T)
=¢"%n(t) - emTemo=Tlhy(t - T)

1 —aT 3 1
Glw) = —— - LT = [1 = e~(e+aIT)
jw+tao jwta jw+a

3.3-4 From time-shifting property
o(t £ T) == Gw)e* T
Therefore
ot +T) +q(t = T) = Glw)e™T + Gw)er T = 2G(w) cos T
Ve can use this result to derive transforms of signals in Fig. P3.3-4.
(a) Here g(#) is a gate pulse as shown in Fig. S3.3-4a.
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3.3-5

3.3-6

g(t) = rect (-;») <= 2sinc(w)
Also T = 3. The signal in Fig. P3.3-4a is g(t + 3) + g{t - 3), and

g(t + 3) + g(t — 3) &= 4sinc(w) cos 3w
(b) Here g(t) is a triangular pulse shown in Fig. $3.3-4b. From the Table 3.1 {pair 19) E
’ i

g{t)=A4A (é) <= sinc? (%)
Also T = 3. The signal in Fig. P3.3-4bis g(t + 3} + g(t — 3), and

g(t +3)+g(t — 3) &= 2 sinc? (g) cos Jw

a) 4 gued
1
1 1 (a) /I\ SR

-1 ¢« - - | I ¢+ -

Fig. $3.3-4
Frequency-shifting property states that
_(;(r)r'*"“Jot & Glw F wo)
Therefore
Y si 1 [RPE V1 ] = jwpt 1 . i
g{?)sin wot = -27;g\l)r + g()e ]= 2—j[G(u-«:o)-rG(.u—-do),

Time-shifting property states that
Gt 2 T) = G(u)eT
Therefore
ot = T) = g(t = T) &= Gw)eT = Gu)e™™7T = 2jG(w)sinoT

and
%,-'{9(1 +T)-g(t-T)) & G(w)sinTw
The signal in Fig. P3.3-5 is g(* + 3) — g(t — 3) where
g(t) = rect (%) &= 2sinc(w)
Therefore

g(t + 3) — g(t = 3) &= 2j[2sinc(w)sin 3w] = 47 sinc(w) sin 3w

Fig. (a) The signal g(?) in this case is a triangle pulse A(-z’;) (Fig. 83.3-6) multiplied by cos 10¢t.
(t)=4 (-E-) cos 107
b= 2n

Also from Table 3.1 (pair 19) A(g) <= 7 sincz(-"sj‘-’) From the modulation property (3.35), it follows that

g(t)=4A (%—) cos 10t & -’2: {sinc"" [_”_(i.;_l?).] + sinc? [m-;—lﬁl]}

Tl’

The Fourier transform in this case is a real function and we need only the amplitude spectrum in this case as
shown in Fig. §3.3-6a.

Fig. (b) The signal g(t) here is the same as the signal in Fig. (a) delayed by 2. From time shifting property.
its Fourier transform is the same as in part (a) multiplied by ¢~9+(3%) Therefore
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3.3-7

Fig. S3.3-6

Gl = I {sinc2 [—————W(d — 10)] + sinc? [f-(“‘—'——--‘L ]0)] } pd2me
2 2 2

The Fourier transform in this case is the same as that in part (a) multiplied by ¢~427<  This multiplying factor
represents a linear phase spectium —27w. Thus we have an amplitude spectrum {same as in part (a)] as well as
a linear phase spectrum :G(«) = —27w as shown in Fig. $3.3-6b. the amplitude spectrum in this case as shovn
in Fig. $3.3-6h.

Note: In the above solution. we first multiplied the triangle pulse A(;’;) by cos 10t and then delayed the result
by 27. This means the signal in Fig. (b) is exprersed as A(‘-“%)cos 10(t - 27).

e could have interchanged the operation in this particular case. that is. the triangle pulse A(Q-‘—*) is first delayed
by 27 and then the resuls is multiplied by cos 10t. In this alternate procedure. the signal in Fig. (b} is expressed
as A(L52%) cos 101

This interchange of operation is permissible here only because the sinusoid cos 10t exccutes integral number of
cvcles in the interval 27, Because of this both the expressions are equivalent since cos 10(t — 27) = cos 1Gr.
Fig. (c) In this case the signal is identical to that in Fig. b. except that the basic pulse is rect (2—‘”) instead of
a triangle pulse A{z). Now

rect (Et;) <= 27 sinc{rw)
Using the same argument as for part (b). we obtain

-j2nw

G(w) = n{sinc[x(w + 10)} + sinc[x(w — 10)]}e

(a)
G(w) = rect (w ; 4) + rect (f_;ﬂ)

Also

1 (e

;_-smc(t) &= rect (2)
Therefore

g(t) = %sinc(t)costtt
(b)

Clw=24 (“’_:;i) + A (.“)_;-_i)

Also
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3.3-8

3.3-9

3.3-10

%sinc’(t) = A (

> E

)

Therefore

g(t) = %sinc’(f)cosd,t

From the frequency convolution property, we obtain
2 1
g(t) &= E;G(u) * G(w)

The width property of convolution states that if ¢1(z) » c2(x) = y(z), then the width of y(x) is equal to the
sum of the widths of r1(7) and r2(r). Hence, the width of G(w) = G(w) is twice the width of G(w). Repeated
application of this argument shows that the bandwidth of ¢™(t) is nB Hz (n times the bandwidth of g(1}).

(a)
0 T ,' ,
G(..;)=/ er:—/ eIt dt = —2(1 — cos wT] = 3 sin? (“—’-T—)
0 Jw 'y 2

-T
(b)
q(t) = rect (27_1/2) — rect (t —;/2)
t o wT
rect (7) &= 1‘smc( 2 )
txT/2 o AT ts0rn
rect( T ) e—_—>Tsmc( 3 )e
and
G(e) = Toine (51 ) (0772 = 77
= 2,T'sinc (%) sm-"’-}
- e (4)
(c)

% = 8(t+T) - 26(t) + 4(t = T)

The Fourier transform of this equation yields
J9G(0) = T = 2.4 6757 = 9[1 - cos wT) = ~4sin’ ()

Therefore
G(w) = %sinz (-‘g—)
A basic demodulator is shown in Fig. $3.3-10a. The product of the modulated signal g(t) coswot with 2 coswot
yields
g(1) cos wat x 2coswot = 2g(t) cos® wot = g(1)[1 + cos 2uwot] = g(t) + g(t) cos 2.0t

The product contains the desired g(f) (whose spectrum is centered at w = 0) and the unwanted signal g{t) cos 2ucot
with spectrum 3{G(w+2wo]+G (w - 2.0l. which is centered at +2wo. The two spectra are nonoverlapping because
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3.4-1

3.5-1

+Veaos ot t
gu)ees s, [LowPass gLed
Fiiter

n)2Cos cq,t
Fig. $3.3-10

G o D)

G, (D *
-zo'm'l'ﬂ a000v / - ‘ -

4 4

‘H] (e 'ﬂ,_(a])

-ZD,M ! ”r”;r-w-a - l}ﬂ' IJT w >
) G L (3D 4

W G (@D Hy D
.aa,nv"rr | z/rmT w-> - i - O
Fig. §3.4-1

W < -0 (See Fig. $3.3-10b). We can suppress the unwanted signal by passing the product through a lowpass
filler as shown in Fig. $3.3-10a.

G1(«) = sinc(zgks ) and Gz{w) =1
Figure $3.4-1 shows G1(). G2(«). Hi(~) and Ha(w). Now

Yi(w) = G (w)Hi(w)
Ya{w) = Ga(w)Ha(w)

The spectra Yi(w) and Y2(w) are also shown in Fig. $3.4-1. Because y(t) = 11 (t)ya(t), the frequency convolution
property yields ¥(w) =1 (w) * Ya(w). From the width property of convolution, it follows that the bandwidth of
Y (») is the sum of bandwidths of ¥1(w) and Ya(w). Because the bandwidths of Y)(w) and Yz(w) are 10 kHz. 5
kHz. respectively. the bandwidth of Y (w) is 15 kHz.

H(u}) = c—ku’c—jwto

Using pair 22 (Table 3.1) and time-shifting property, we get

1 —(t-t0)/4%
4

h(t) =

3

This is noncausal. Hence the filter is unrealizable. Also

™ njH{M , > kw? _
/ a1 wT ) FEaT
2?

-n

<)



3.5-2

ht)

oY +-
Figure S3.5-1

Hence the filter is noncausal and therefore unrealizable. Since h(t) is a Gaussian function delayed by to. it looks
as shown in the adjacent figure. Choosing to = 3V 2k, h(0) = «~45 = 0.011 or 1.1% of its peak value. Hence
to = 3v/2k is a reasonable choice to make the filter approximately realizable.

2 x 105 --jwtg
w? + 1010

From pair 3. Table 3.1 and time-shifting property, we get

H(w) =
ht) = a’msl'““’l
The impulse response is noncausal. and the filter is unrealizable.

h{(©

& t-
Figure $3.5-2

The exponential delays to 1.8% at 4 times constants. Hence to = 4/a =4 x 10~% = 40us is a reasonable choice
10 make this filter approximately realizable.

3.5-3 From the results in Example 3.16

i Vo a = —l- = ]()6
|H("J)| 0% + ni a RC
Also H(0) = 1. Hence if wy is the frequency where the amplitude response drops to 0.95. then

[H(w)| = ___196_.__
' Vi + 1032

Moreover. the time delay is given by (see Example 3.16)

= 0.95 => w) = 328.684

. _ a _ 1 - -6
ta(w) = s == 14(0) = o= 10
If w2 is the frequency where the time delay drops to 0.98% of its value at w = 0. then

106 - -
ta(ws) = by, PRI = 0.98 x 1078 == wy = 142,857

We select the smaller of w1 and w2, that isw = 142,857, where both the specifications are satisfied. This vields
a frequency of 22,736.4 Hz.

3.5-4 There is a typo in this example. The time delay tolerance should be 4% instead of 1%.

The band of Aw = 2000 centered at w = 10° represents the frequency range from 0.99 x 10° to 1.01 x 10°. Let
us consider the gains and the time delays at the band edges. From Example 3.16

a a :
|H(e) = _-:J\/-—T:-—? tg(w) = Ty o? a=10"

At the edges of the band
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. LI _ -3 LI g3 = -3
{H(0.99 x 10 );_m%m_unxxo , and |H(1.01x10 )|_m 9.901 x 10

The gain variation over the band is only 1.99%. Similarly, we find the time delays at the band edges as

s 3 3 ! — 1
14099 x 10%) = GrpriyrerE = g and t(101x107)= TR = N

The time delay variation over the band is 4%. Hence, the transmission may be considered distortionless. The
signal is transmitted with a gain and time delay at the center of the band, that is at w = 10%. We also find
{H(10%) = 0.01 and 14(10%) = 1—-7. Hence, if g(t) is the input. the corresponding output is

y(t) = 0.01g(t - 1077)

3ct)

t-»

J t>
Bat-t-T)

j ,1_"‘ A(t-t>T)

Fig. §3.6-1

3.6-1

-

w

[ ) . Jlwto+ksnwT)

¥i(w) = G(w) rect (——

x~ G(w) rect (4:3) [t = jksin WT)e 7!

This follows from the fact that ¢ = 1+ when » € 1. Moreover, G{w)rect (ﬁ) = G(w) hecause G{w) is
bandlimited to B Hz. Hence

Y(2) = Gw)e 7 - jkG(w)sin Iy

\oreover. we can show that (see Prob. 3.3-5)
51719(' +T)~g{t-T)] = Glw)sinwT
Hence
k
y(t) = g(t = to) + Slo(t ~to = T) = g(t = to+T)]

Figure $3.6-1 shows g(t) and y(t).

3.6-2 Recall that the transfer function of an ideal time delay of T seconds is =T Hence. the trausfer function of
the equalizer in Fig. P36-2is

Heg(w) = a0 + aye 7R 4 aqr'.°"2""“ 4+ ane "8t

Ideally. we require the equalizer to have

[}{Cq("))]desircd = 1+ ﬁ,,--,,-uA!

- - 4 %
=1-ar ""A'+02r'. 12wt _ L3, Bt

The cqualizer in Fig. P3.6-2 approximates this expression if we select ag = l.a, = —a. 02 = @ ., 0n =
(~1)"a™.
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3.7-1

E, = 2 = 3 &/ dt
g ./—m_q (Hat T2 _/:,,.,F

Letting £ = v and consequently dt = Sxdx

Ey=—1_2'_”_' e~ dg = L
rer ﬁ o 2\/71[0 2!7\/1-!'

Also from pair 22 (Table 3.1)

G(U) —a w /2

1 1 —e3?
E,=-2-;/ |G(w)}2du=§; e dw

Letting muw = 35 and consequently dw = —‘75(11:

E e~y = e =
o= 211’ a'\,/_ / mav2 20T
3.7-2 Consider a signal

g(t) = sinc(kt) and G(w)= {-rect (-;—;(-)

~ e ¥ 2 2
- [ snkiyat=n= [ 2
Eg = /—msmc (kt)dt = T %] [rect(zk)] dw

3.7-3 Recall that

.qz(t)=-2];_/ Ga(w)r’* dw and / ()’ dt = Gi(~w)

-

Therefore

/ q1(t)ga(t)dt = —/ a(t) [/ Ga(w)e’™' d.d] dt
= -—/ Galw) [/ q;(t)c""‘" dt] dw = -21—’;'/01(-“))0:(.0)(1“1

Interchanging the roles of g1(t) and g2(t) in the above development, we can show that
2 ¥ 1 L 3]
/ q(t)g2(t)dt = 5;/ G1(w)Ga(—w)dw

3.7-4 In the generalized Parseval's theorem in Prob. 3.7-3. if we identify g1(t) = sinc(2nBt — mn) and g2(t) =

sinc (27 Bt — n7), then

Gilw) = g ree wt () . and Galo) = Lrect (325)

Therefore

~ 1 1 ~ w 2 ynemiw
/. gi()g2(t)di = -2-:(-2'5)‘;?/_m [rect (413)] ‘ e

~

But rect (;;-‘5) =1 for jo| < 2nB. and is 0 otherwise. Hence
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2B

puﬁﬁdw_—_{o ﬂ#"l
515 n=1m

In evaluating the integral. we used the fact that e*i2"k = | when k is an integer.

- 1
/ g1{t)ga(t) dt = =5

— -2nB

3.7-5 Application of duality property [Eq. (3.24)] to pair 3 (Table 3.1) yields

Tl i-aaz &= e 0!

The signal energy is given by

E,= l/ (270 do = 41r/ e gy = il
mJo )

a
The energy contained within the band (0 to W ) is
w 2n
Ew= 41r/ 03 = =1 - e~V
o a

If Ew = 0.9953. then

2.3025 r 0.366

PV =001 = W= ad/s = e Hz

a

3.7-6 If g2(t) = 4(w). then the output Y{x) = A(w)H (). where H(w) is the lowpass filter transfer function (Fig.

$3.7-6). Because this filter band Af — 0. we may express it as an impuise function of area 47Af. Thus.
H(v) = [4rAf]d(w) and Y(w)= [4nA(w)Af]b(w) = [4mA(0)Afib(w)
Here we used the property g(7)4(r) = g{0)4(r) {Eq. (1.23a)]. This yields
y(t) = 2A(0)Af

Next. because ¢°(t) <= A(w). we have

AlWw) = ‘/‘1 g?(1)e™ 7' dt sothat A(0) =/ g°(t)dt = Eg

-y

Hence. (1) = 2E,Af.

i R0
~ (°D
- 4TAf 9
| W 4 >

Fig. S3.7-6

3.8-1 Let g(t) = g (f) + g2(t). Then

1 T/2
Ry(r) = Tlim —/ [91(2) + g2(t)jigs (t + 7) + g2t + 1)} dt
e -T2
= Ry, (7) + Rop{7) + Ra1g2(7) + Ryag (m)

where

L [T
‘Rzy(‘r)=1!im -T—/ r(Oy(t +7)dt

iiad T/2
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3.8-2

If we let g1(t) = Cacos(unt + 61) and ga(t) = Cacos(wat + #2). then

Ryga(7) = lim =

R

T/2
/ C1C2 cos{unt + ) cos(wat + w27 + fa) dt
-T/2

According to the argument used in Example 2.2b. the integral on the right-hand side is zero. Hence. Ry, o (7) = 0.
Using the same argument. we have Rya9: (1) = 0. Therefore

2 2
Ry(r) = R (7) + Rgu(7) = % coswT + %— cosw2T

This result can be extended to a sum of any number of sinusoids as long as the frequency of each sinusoid is
distinct. hence, if

™~ ~2
then Ry(r)= z 923 cos nwoT N

nasl

g(t) = 3 Cn cos(nwot + 8a)

n=1

Moreover. for go{t) = Co, Rg(T) = C3, and

T/2
/ CoCh cos(th+w1r+9;)dt=0
T/2

Rgoa: (T) = T!im -

——n

Thus. we can generalize the result as follows. If

e 9 e 7] 2 Lo
g(t)=Co+ Z C cos(nwot + n) then Rq(r) = ct+ Z %‘- COS NwoT <
n=] .

nx=]

and

Sylw) = C28() + %ZCi{b(u — nwo) + 8(w + nwo)|

=l

On the average. there are

Figure $3.8-2a shows the waveforms r(t) and z(1 — 1) for 7 < To/2. Let T = NT,.
(%ﬂ ~T)as

N/2 pulses in the waveform of duration T. The area under the product x(t)z{t — 7) is N/2 times
shown in Fig. $3.8-2b. Therefore

1 T/2
Rz(7) = T],—Tw T [ler(t)r(r - 1)dt
T N—~ NTy 2 \ 2 “2\2 T, 2

For 1} < {r} € Tp. there is no overlap between pulses. and Re(r)=0.ForTh < |7l < -"-? pulses again overlap.
But on the average. only half pulses overlap. Hence, R;(7) repeats every T, seconds, but only with half the
magnitude. as shown in Fig. §3.8-2c. We can express R(7) as a sum of two components. as shown in Fig.
§3.8-2d. Thus. Rz(T) = Ru(7) + Ra(r). The PSD is the sum of the Fourier transforms of Rs(r) and Ra(T).
Hence

wTy

; ) + S2(w)

where Sa2(w) is the Fourier transform of the periodic triangle function,

Sz(w) = -Z% sinc? (
shown in Fig. §3.8-2d. We find the

exponential Fourier series for this periodic signal to be
2n
,R — D Ty T
ar) = z ¢ “b = T

Using Eq. (2.80). we find Dn = {gsinc"'(%ﬁ). Hence, according to Eq. (3.41)

-~

Sa(w) = % z sinc? (%’i) Blw —nwp) W= %
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"l:
2
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-l

—J

|

Avea T

2
b - - > 3% T ST
- 37 3 - "
z z -y kS T =
(d)
a Sxlw
—eF -2l 4 &1
Fig. S3.8-2
Tlnéxefore
ST (4T 4 T S sine? (22 60w - 2
S:(w) = -]—6 sinc ( 3 ) + F "gz_:msmc ( > )b(w nws) wb T
3.8-3 J/{w) = ;4 and [Hiw)? = ¢

(a) 1'2(')=l mKd«z'—'oo and u’(r).-:l . S Y
' T Jo ' T Jo wi+l 2

31



AIQMJ 1 1 1 Qq\h' 1 1 d 1
(b) J(!):;Ady:; and y(t):;Lﬁu—z

L e anead ~ A L™ L
2, _ 1 _ ) 2,y . 1 dw-1) 1 dw=-1) 1
(c) (1) = "./o Hw=1)dw = = and ¥t = ;A T o = — ; v = 7=

3.8-4 The ideal differentiator transfer function is jw. Hence. the transfer function of the entire system is

w1 Jw+1 w2+l

AAPNA 1 ~ , 1 1
()= = rect {2) dw == d
n 2 g
0 o

ANAM ~ . 2 ! 2 .
1/2(f) = 1 rect (:-)) —:J——du = l e dw = l (1 - :) = 0.06831
% Jo 2/ W2 +1 7 J, wi+] n 4

H(u)=(11 )(.iw)= Jw and |HW)’ =

€
i

1
%
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Chapter 4

H

4.2-1 (i) For i (t) = cos 1000/

Poss.sc(!) = m(t)cos 10,000t = cos 1000t cos 10, 000t

1
= =[cos 9000t + cos 11.000¢
2Lv-‘ \._v——fl

LSB USB
(ii) For m (1) = 2cos 1000t + cos 2000¢

- Ypss.cc(t) = m(t) cos10.000t = 2 cos 1000t + cos 20001} cos 10.000¢
= ¢0s 90007 + cos 11.000¢ + -,ls[cos 8000t + cos 12.000¢]

= {cos 9000/ + '-;-cos 8000¢) + [cos 11,000t + %cos 12.000¢]

LSB USB

)

{iii) For m/1} = cos 10001 cos 30001

Crepec(t) = m(t)cos10.000f = %{cos?OOOt + 08 4000¢] cos 10, 000t

%[cos 8000t + cos 12.000t) + %[cos 6000t + cos 14,000¢]

1 1
E'cos 8000t Vv cos 6000t + 5[505 12.000¢ + cos 14.000¢]

LSB UvSB

This information is summarized in a table below. Figure $4.2-1 shows various spectra.

T MWD Modu]afeel si_gna\ sped'mm
. : T :
o 1T - r £l o> 1.3
- 1600 1 1600 :u};’. - 9000 Jr . Qqceoe (1.€00
jor A
W ol B .1 -'m +e 1 1a
¢ A ’ *
" T e 2008 se? 28060 ”n> 12K ‘9'\"8& al o) —> £ W R e
L) T
il -
Tﬁﬁw» 11 ¢4 o T4 Tt
<415 O 2k 4K K ~12K =8 —6M 1 W > €K 8K 12k 14K
Fig. §4.2-1
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Fig. §4.2-2

r

Fig. 84.2-3

DSB frequency | LSB frequency | USB frequency

case | Baseband frequency |
i 1000 9000 and 11,000 | 9000 11.000 |
i 1000 9000 and 11,000 ‘ 9000 11,000 I
2000 8000 and 12000 | 8000 | 12000 |

i 3000 8000 and 12000 | 8000 | 12000 |
4000 6000 and 14.000 | 6000 l 14,000 |

4.2-2 The relevant plots are shown in Fig. $4.2-2.

4.2-3 The relevant plots are shown in Fig. 54.2-3.
4.2-4 (a) The signal at point b is

ga(t) = m(t) cos” wet

= m(t) [% coswet + %COS 3«1:!]
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The term 3m(t)coswet is the desired modulated signal, whose spectrum is centered at tw.. The remaining
term %m(r) cos 3w.t is the unwanted term, which represents the modulated signal with carrier frequency Jwc
with spectrum centered at 3w 8s shown in Fig. $4.2-4. The bandpass filter centered at Zw. allows to pass
the desired term gm(l) cos ct. but suppresses the unwanted term %-m(t) cos 3w.t. Hence. this system works as
desired with the output Zm (1) coswef.

(b) Figure $4.2-4 shows the spectra at points b and c.

(¢) The minimum usable value of we is 27 B in order to avoid spectral folding at dc.

(d)
i (t) cos® wet = ’—"—,‘(,-Q (1 + cos 2wet|
1 1
= Em(t) + §m(t) cos 2wt
The signal at point b consists of the baseband signal %m(f) and a modulated signal %m(t) cos 2w.t, which has a
carrier frequency 2w . not the desired value we. Both the components will be suppressed by the filter. whose
center center frequency is wc. Hence, this system will not do the desired job.

{e) The reader may verify that the identity for cosnw.t contains a term cos wct when n is odd. This is not true
when n is even. Hence. the system works for a carrier cos™ uict only when n is odd.

" | at(B)
$ i A

& W B

a @&

.y 5 o-

Fig. S4.2-4

4.2-5 We use the ring modulator shown in Fig. 4.6 with the carrier frequency fe = 100 kHz (& = 2007 x 10"). and
the output bandpass filter centered at fo = 300 kHz. The output ;(t) is found in Eq. (4.7b) as

n(t) = :— [m(t)cos Wet — %m(t)cos 3at + %m(t) cos St + ]

The output bandpass filter suppresses all the terms except the one centered at 300 kHz (corresponding to the
carrier 3<.t). Hence. the filter output is

y(t) = ;—:-m(t) cos 3ot

This is the desired output km(t) coswct with k=—-4/3r.

4.2-8 ‘I'he resistance of each diode is r ochms while conducting. and oo when off. When the carrier A cos w.f is positive,
the diodes conduct (during the entire positive half cycle). and when the carrier is negative the diodes are open
(during the entire negative half cycle). Thus, during the positive half cycle. the voltage -ﬁ-’_{-;g‘)(f) appears across
each of the resistors /t. During the negative half cycle. the output voltage is zero. Therefore, the diodes act as
a gate in the circuit that is basically a voltage divider with a gain 2R/(R + r). The output is therefore

2n
eo(l) = Tz—:—;w(t)m(/)
The period of u:(t) is To = 27 /w.. Hence. from Eq. (2.75)
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12
w(t) = '2' + P [COB wel — %cos Swet + %cos Sa;ct+-»-]

The output eg(t) is
2R 2R 1 2 . 1 1 )]
B — 1) = com— - - Pp— N 4 - t N
ro(t) -y (t)m(t) - m(t) [2 + (cos wet 3 o8 uct + & co8 Swet +

(r) If we pass the output co(t) through a bandband filter (centered at wc). the filter suppresses the signal m(t) and
m (1) cos nwet for all n # 1, Jeaving only the modulated term ;(ﬁ;sm(t)cosuct intact. Hence. the system acts
as a modulator.

(b) The same circuit can be used as a demodulator if we use a basepass filter at the output. In this case, the input
is @(t) = ni{?) coswet and the output is ;—&;ﬁ—,;m(z).

4.2-7 From the results in Prob. 4.2-6. the output co(t) = km(t)cosw.t, where k = i =5 In the present case. -
m(t) = sin{wct + A). Hence, the output is

eo(t) = ksin{wct + 6) coswet = g[sinﬂ + sin(2wct + 8)]

The lowpass filter suppresses the sinusoid of frequency 2wc and transmits only the dc term §sin 8.

laf ) AL\I/AM;;
- oK | Bis jok (B (O-> - 10K, | 3% Z_;EK

at (@
AN A A

—2BK -20K -5k, [P 5K 2014, 35K O+
m, ()
¢rs 20000 LPF -
cos (g eoct :
_ m, (1 )
I L PF

Fig. S4.2-8

4.2-8 (a) Fig. 54.2-8 shows the signals at points a. b. and c. .
(b) From the spectrurn at point c. it is clear that the channel bandwidth must be at least 30.000 rad/s (from
5000 to 35.000 rad/s.}.
(c) Fig. 54.2-8 shows the receiver to recover ma(t) and ma(t) from the received modulated signal.

4.2-9 (a) 54.2-9 shows the output signal spectrum Y (w).

(b) Observe that Y (w) is the same as M () with the frequency spectrum inverted. that is. the high frequencies
are shifted to lower frequencies and vice versa. ‘Thus. the scrambler in Fig. P4.2-9 inverts the frequency spectrum.
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-le

Fig. $4.3-2

To get back the original spectrum M («). we need to invert the spectrum Y () once again. This can he done by
passing the scrambled signal y(?) through the same scrambler.

4.2-10 \We use the ring modulator shown in Fig. 4.6. except that the input is m(!)cas(?w)lost instead of (1. The
carrier frequency is 200 kHz Lwe = (4007)10%]. and the output bandpass filter is centered at 400 kHz. The
output r,(t) is found in Eq. (4.7b) as

v, (1) = i) cos(?r)lf)s!}n'g(f) = %m(f)cos(f.’r-)l()st [cos (4007!’)10'1! - %cos 3(4001&')103!. + ::’-cos 5(4007.')1011 -+ ]

The product of the terms (—1/3)cos 3(4007)10% and (4/7)m(t) cos(2n)10% yields the desired term
- (1) cos (8007)10™1. whose spectrum is centered at 400 kHz. It alone passes through the bandpass filter
(centered at 400 kHz). All the other terms are suppressed. The desired output is

y(t) = —3—21r—1!:(t)cos (8007)10™
4.3-1 go(t) = |A < m(t)| cos.t. Hence.

[A + m(t)] cos® wet

gs(t)

%{-4 +m{t)] + %[A + m(t)] cos 2wet

The first term is a lowpass signal because its spectrum is centered at w = 0. The lowpass filter allows this tenn
to pass. but suppresses the second term. whose spectrum is centered at +2we. Hence the output of the lowpass
filter is

y(t) = A+ 1ll(f)

When this signal is passed through a de block, the dc terin A is suppressed yielding the output m(#). This
shows that the system can demodulate AM signal regardless of the value of A. This is a synchronous or colierent
demodulation.
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4.3-2

(a) Il=0.5=—‘i—=7 = A=720
(b) u=1.0=1’i;=1£ - A=10
(e) u=2.0=%’-=1]9 > A4=5
() ,‘=m=£';{:=lA‘l - A=0

This means that j = 0o represents the DSB-SC case. Figure $4.3-2 shows various waveforms.

4.3-3 (a) According to Eq. (4.102), the carrier amplitude is 4 = mp/p = 10/08 = 12.8. The carrier power is

P. = A4%/2 = 78.125.

m ()
10 .

’
p
e

L e

T /|° T -
~_ *

Fig. S4.3-3

very quarter cycle. the power of

(b) The sideband power is m*(t)/2. Because of symmetry of amplitude values e
Over a quarter cycle in(t) can

m(t) may be computed by averaging the signal energy over a quarter cycle only.
be represented as m{t) = 40t/To (see Fig. 54.3-3). Hence.

IS To/4 2
- 40r] ~
) = 773 A [—-TO dt = 33.34

The sideband power is

%(
m*(t
P, = —-2—- = 16.67
The efliciency is
i 16.67 x 100 = 19.66%

"= B P, 78125+ 16.67

m(t)|. The signal [A + m(t)] coswel is
he previous argument, it is clear that
fore. the condition

4.3-4 From Fig. S4.3-4 it is clear that the envelope of the signal i (t) coswc? is |
identical to m(t)coswet with m(t) veplaced by A + m(t). Hence. using t
its envelope is |A + m(1)]. Now. if A+m(t)>0forallt then 4+ m(t) = |A+ m(t)j. Theve

for demodulating AM signal using envelope detector is 4 + m(t) > 0 for all 1.

- m(t)zcos 2Tt




4.3-5

4.3-6

4.3-7

4.3-8

= [A+meedfeos 6t
— > | qenerator
MLe) [ 2medess 4t
—— cos Wt
AM
s nerqtof |

[A- mte)] eos Ot
Fig. S4.3-5

\When an input to a DSB-Sc generator is m (t), the corresponding output is m(t) coswet. Clearly, if the input is
A + m(1). the corresponding output will be [A +m(t)] cosw,t. This is precisely the AM signal. Thus. by adding
a dc of value A to the baseband signal m(#). we can generate AM signal using a DSB-SC generator.

The converse is generally not true. However, we can generate DSB-SC using AM generators if we use two
identical AM generators in a balanced scheme shown in Fig. $4.3-5 to cancel out the carrier component.

\When an input to a DSB-SC demodulator is 7n(t) coswl. the corresponding output is m(t). Clearly. if the
input is [A + ru (1)) cos wet. the corresponding output. will A + m(t). By blocking the dc component A from this
output. we can demodulate the AM signal using a DSB-SC demodulator.

The converse. unfortunately. is not true. This is because. when an input to an AM demodulator is (1) coswct.
the corresponding output is {m(t)| [the envelope of m(t)l. Hence. unless m{t) > 0 for all t. it is not possible to
demodulate DSB-SC signal using an AM demodulator.

“HI— -

Fig. S4.3-7

Observe that m2(1) = A? for all 1. Hence. the time average of m?(t) is also A2. Thus

PSP
m?3{t) _ _/ﬁ

2045 2
mé(t)y=A P, = 7 7

The carrier amplitude is A = mp/p = mp = A. Hence P. = A%/2. The total power is P = P.+ P, = A*. The
power efficiency is

2y
1’=%X100=%—4; x 100 = 0.5

The AM signal for 4 = 1 is shown in Fig. 54.3-7.

‘The signal at point a is (4 + m (1)} cos wet. The signal at point b is

A% 4 24m{t) + m3(t)
9

(1 + cos 2wct)

r() =4+ n:(t)}zcosz.ucf =

The lowpass filter suppresses the term containing cos 2w.t. Hence. the signal at point ¢ is

w(t) = A2 +2A/u(f)+7n’(l) - %2_ [l + 2m (1) N (1"_;{-).)2}

2 A

Usually. m(t)/4 <« 1 for most of the time. Only when m(f) is near its peak, this condition is violated. Hence.
the output at point d is
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2
u(t) = %— + Am(l)

A blocking capacitor will suppress the dc term A?/2. yielding the output Am(t). From the signal w(t), we see
that the distortion component is m3{1)/2.

4.4-1 In Fig. 4.14. when the carrier is cos [(Aw)t + 6] or sin [(Aw)t + 5], we have

r1{t) = 2w (t) coBwet + ma(t) sinwet] cos [(we + Aw)t + 8]
= 2m (1) coswctcos [(we + Aw)t + 8] + 2m3(t) sinwct cos [(we + Aw)t + 8]
= m(t){cos [(Aw)t + 8] + cos [(2we + Aw)t + 8]} + m2(t){sin [(2we + Aw)t + 8] — sin [(Aw)t + 81}

Similarly

ra(t) = my(t){sin [(2we + BI) + 8]+ sin [(Aw)t + 8]} + ma(t){cos [((Aw)t + 8] — cos [(2we + Au)t + 8]}
After 7,(t) and 72{t) are passed through lowpass filter. the outputs are

my(t) = my(t) cos [((Aw)t + 8] - ma(t)sin [(Aw)t + 6
ma(t) = m(t)sin [(Aw)t + 8} + ma(t) cos [(Aw)t + 6]

4.5-1 To generate a DSB-SC signal from m(t). we multiply m(t) with coswc!. However. to generate the SSB signals
of the same relative magnirude. it is convenient to multiply m(t) with 2coswc!. This also avoids the nuisance
of the fractions 1/2. and yields the DSB-SC spectrum M (w — we) + M (w+we). We suppress the USB spectrum
(above . and below —wc) to obtain the LSB spectrum. Similarly. to obtain the USB spectrum. we suppress
the LSB spectrum (between —we¢ and w) from the DSB-SC spectrum. Figures S4.5-1 2. b and ¢ show the three

cases.
(a)From Fig. a. we can express Fres(t) = cos 900t and p,.sp (1) = cos 1100t.

(b)From Fig. b. we can express Frse(t) = 2c08 T0O? + cos 9007 and ¢sp(t) = cos 11007 + 2 cos 13001
{c)From Fig. c. we can express Zrep(t) = 3[cos 400t + cos 600¢] and wysg () = %[cos 1400¢ + cos 1600t

4.5-2
o (t) = m(t)coswet — mp(t)sinwet and Wrsp (1) = m(t)coswel + ma(t)sinwet

(a) m(t) = cos 1001 and my(t) = sin 100t. Hence,
¥rea (1) = cos 1007 cos 1000t + sin 100t sin 1000¢ = cos(1000 — 100)t = cos 900?

Prsp(t) = cOS 100¢ cos 1000t — sin 100¢ sin 1000t = cos(1000 + 100)t = cos 1100t
(b) m(t) = cos 100t + 2 cos 300t and ma(t) = sin 100t + 2sin 300t. Hence,

#rep(?) = (cos 100t + 2cos 3001) cos 1000t + (sin 100t + 2sin 300t) sin 1000t = cos 900t + 2 cos 700!

t) = (cos 100t + 2cos 300t) cos 10007 ~ (sin 100t + 2sin 300t) sin 1000t = cos 1100t + 2 cos 1300¢

Fosal

(¢} m(t) = cos 1007 cos 500¢ = 0.5 cos 4001 + 0.5 cos 600t and ma(t) = 0.55in 400t + 0.5sin 600¢. Hence.

Frea(t) = (0.5c0s 400t + 0.5 cos 600t) cos 1000t + (0.5sin 400t + 0.5 sin 600t) sin 10002 = 0.5 cos 400t + 0.5 cos 600t

“Lenlt) = (0.5cos400t +0.5 cos 6001) cos 1000t — (0.5sin 400t + 0.5 sin 600¢) sin 10007 = 0.5 cos 1400t + 0.5 cos 1600t

40

L

Py



‘ipsef@ ,

x M (D : =
fl1 11 1 1
-wol 0o w-> -npe  ~qo0 0] W > qoo oD
QL’BU& éusétb
A SR A S
- Qoo | w=> Aqoo —HOO ol w= 110D
)
M) B sl

tel el

allsy
T ele ]
~-13K -u=-q 7K o ‘n( QK IIK 13K

~3c0 =(o0| 100 302 W»

I & vas D
42 iaﬂr
It e I = 4]
~qK =7 10 ‘0-,7" aK “ 3K “’lK IO W KR 13
(>
M ) Pryn (@

11 11 BT I

=100 ~I%00 =00 ~100|O Yoo 607 44 oo

W) D p

nm’ g E

- 400 - 400 lb 4oo 5 00 -1600 -140® (0 comm 1402 (60D

(<)

111

uo Yoo |0 nm aa

E:j-ures not to seale -

Fig. $4.5-1

4l



M(©) M(D+E + Mw-uy) = éb,g‘ﬂ

o
Y
J
pi-

(b):
20c0Tr ~10000 T el > 4 120007 .
’ ~ Bo00T oo00T

i (D) D (@) L
1‘& vee N 14}‘“ M (4

2

o' IGeoem (2,000 o teeen lgooolt 0 ~>

Fig. S4.5-3

M(w)
(a)
[ o
‘ Aw 0in SSB B
(b) A :’
Aw w: . .
Fig. 54.5-5 i

4.5-3 'a) Figure S4.5-3a shows the spectrum of m{(t) and Fig. $4.5-3b shows the corresponding DSB-SC spectrum
it cOS {0,00017'3
(b; Figure S4.5-3c shows the corresponding LSB spectrum obtained by suppressing the USB spectrum.
(¢} Figure $4.5-3d shows the corresponding USB spectrum obtained by suppressing the LSB spectrum.
\We now find the inverse Fourier wransforms of the LSB and USB spectra from Table 3.1 (pair 18) and the

frequency shifting property as

£rep (1) = 1000 sinc (100071) cos 9000~
@ en(t} = 10008inc (10007t) cos 11, 0007t

’

4.5-4 Because Mp(w) = —Jj M () sgn (w). the transfer function of a Hilbert transformer is

H(w) = —jsen(w)

If we apply ma(t) at the input of the Hilbert transformer. Y (w). the spectrum of the output signal y(t) is

¥ (w) = Ma(w)H (w) = -7 () sgn ()]~ jsen (W) = —M () o

This shows that the Hilbert transform of ma(t) is —r(1). To show that the energies of m(t) and ma(t) are 4

equal. we have

Em, =

Em =/_ mi(t)dt = %/_JM@)P()J

=

s ™ ” ) 1 ~ 1 ) " 1 ~o .
mi () dt = 5= /wuu,.(,-)y’ dw = ‘-’7/.& 1AL ()P lisgn ()7 dw = 5= /_mi,\l(..;)lzd..; = Em

~
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4.5-5

4.5-6

The incoming SSB signal at the receiver is given by [Eq. (4.17b)]

Crep(t) = m(1) coswet + ma(t) sinwet

Let the local carrier be cos [(we + Aw)t + 8]. The prodeuct of the incoming signal and the local carrier is ea(t).
given by

ca(t) = p g (t) cos [(we + Aw)t + 8]
= 2{m(t) coswct + ma(t) sinwet] cos [(we + Aw)t + )

The lowpass filter suppresses the sum frequency component centered at the frequency (2we + Aw). and passes
only the difference frequency component centered at the frequency Aw. Hence, the filter output eq(t) is given
by

co(t) = m(t) cos(Aw)t + #) = ma(t)sin(Aw)t +8)

Observe that if both A and & are zevo. the output is given by

eg(t) = m(t)

as expected. If only # = 0, then the output is given by

colt) = m(#) cos(Aw)t -~ ma(t)sin(Aw)t

This is an USB signal corresponding to a carrier frequency Aw as shown in Fig. 54.5-5b. This spectrum is the
same as the spectrum A/ (w) with each frequency component shifted by a frequency Aw. This changes the sound
of an audio signal slightly. For voice signals. the frequency shift within £20 Hz is considered tolerable. Most US
svstems. however.estrict the shift to 2 Ha.

{b) When only Aw = 0. the lowpass filter output is

rolt) = m(t)cost — mp(t)sind

We now show that this is a phase distortion, where each frequency component of A/(«) is shifted in phase by
amount . The Fourier transform of this equation yields

Eol(w) = M(w)cosd — AMy(w)sind
But from Eq. (4.14b}

—jM{(w) w>0

Alh(\&') = "]'58“ (.4))1‘1(’-0‘) = { I‘I( ,) w < 0

and
M{(w) el w >0
Eo(w) = )
o) { M(w)emi® w<0

It follows that the amplitude spectrum of eo(?) is M (w). the same as that for m({f). But the phase of each
component is shifted by 4. Phase distortion generally is not a serious problem with voice signals, because the
human ear is somewhat insensitive to phase distortion. Such distortion may change the quality of speech. but
the voice is still intelligible. In video signals and data transmission, however, phase distortion may be intolerable.

We showed in prob. 4.5-4 that the Hilbérz transform of ma(t) is —m(t). Hence, if ma(t) [instead of m(t)] is
applied at the input in Fig. 4.20. the USB output. is

y(1) = mp(t) coswet — m(') sinwel

= m(t) cos (wcr + %) + ma(t) sin (..:ct + %)
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Thus. if we apply m4{t) at the input of the Fig. 4.20. the USB output is an LSB signa! corresponding to m{#.
The cairier also acquires a phase shift /2. Similarly. we can show that if we apply ma{t) at the input of the
Fig. 4.20. the LSB output would be an USB signal corresponding to m(t) (with a carrier phase shifted by w/2).

4.6-1 From Eq. (4.20)

1

= < 2
Hile + we) + Hi(w — we) i< 2eB

Ho(w)

Figure $4.6-1a shows H,(w — wc) and H.(« + we). Figure $4.6-1b shows the reciprocal. which is Ho(w).

4.8-1 A station can be heard at its allocated frequency 1500 kHz as well as at its image frequency. The two frequencies
are 2fir Hz apart. In the present case. fiF = 455 kHz. Hence. the image frequency is 2 x 455 = 910 kHz apart.
Therefore. the station will also be heard if the receiver is tuned to frequency 1500910 = 590 kHz. The reason for
this is as follows. When the receiver is tuned to 590 kHz. the Jocal oscillator frequency is fuo = 590 +455 = 1045
kHz. Now this frequency fro is multiplied with the incoming signal of frequency f. = 1500 kHz. The output &
vields the two modulated signals whose carrier frequencies are the sum and difference frequencies. which ave :
1500 + 1045 = 2545 kHz and 1500 — 1045 = 455 kHz. The sum carrier is suppressed, but the difference carrier
passes through. and the station is received.

4.8-2 The local oscillator generates frequencies in the range 1+8=9 MHz to 30+8=38 MHz. When the receiver setting
is 10MHz. fro = 10+ 8 = 18 MHz. Now. if there is a station at 18 + 8 = 26 MHz. it will beat (mix) with
fio = 18 MHz to produce two signals centered at 26 + 18 = 44 MHz and at 26 — 18 = 8 MHz. The sum
component is suppressed by the IF filter. but the difference component. which is centered at 8 MHz. passes
through the IF filter.
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Fig. S5.1-1

$.1-1 In this case fc = 10 MHz. mp = 1 and m, = 8000.
For FM :
Af = kypmip/2% = 2m x 105,27 = 10° Hz. Also fc = 10". Hence. (f)mux = 107 + 16° = 10.1 MHz. and
{)mm = 10° = 10® = 9.9 MHz. The carrier frequency
increases linearly from 9.9 MHz to 10.]1 MHz over a quarter (rising) cycle of duration a seconds. For the next a
seconds. when 1 (t) = 1. the carrier frequency remains at 10.1 MHz. Over the next quarter (the failing) cycle of
duration a. the carrier frequency decreases linearly from 10.1 MHz to 9.9 MHz., and over the last quarter cycle,

when m (1) = —1. the carrier frequency remains at 9.9 MHz. This cycles repeats periodically with the period 4a
seconds as shown in Fig. §5.1-1a.
For PM :

Af = kprn},/27 = 50% x 8000/27m = 2 x 10° Hz. Also fo = 107. Hence. (f.)max = 107 + 2 x 10® = 10.2 MHz.
and (f))mmn = 107 =2 x 10° = 9.8 MHz. Figure S5.1-1b shows rn(t). We conclude that the frequency remains at
10.2 Mz over the (rising) quarter cycle, where 7ii(t) = 8000. For the next a seconds, rn(t) = 0. and the carrier
frequency remains at 10 MHz. Over the next a seconds, where m(t) = —8000. the carrier frequency remains at
0.8 MHz. Over the last quarter cycle 7i(t) = 0 agein, and the carrier frequency remains at 10 MHz. This cycles
repeats periodically with the period 4a seconds as shown in Fig. $5.1-1.

5.1-2 In this case fe = 1 MHz. mp = 1 and my = 2000.

For FM :
Af = kgmp/27 = 20,0007/2n = 10* Hz. Also fo = 1 MHz. Hence, (fi)max = 10° 4 10* = 1.01 MHz. and
(f)min = 10% — 10% = 0.99 MHz. The carrier frequency rises linearly from 0.99 MHz to 1.01 MHz over the cycle

(over the interval —-‘%: <t< }%——3). Then instantaneously, the carrier frequency falls to 0.99 MHz and starts
rising linearly to 10.0] MHz over the next cycle. The cycle repeats periodically with period 10~? as shown in
Fig. §5.1-2a.

For PM :

Here. because m(t) has jump discontinuities. we shall use a direct approach. For convenience. we select the
origin for m(t) as shown in Fig. $5.1-2. Over the interval -‘9;—: to -1%’- we can express the message signal as
m(t) = 2000t. Hence.

Epull) = cos [2n(10)6t + -;in.(r)]
= C0s [21r(10)°t + %20001]
= cos [27(10)°1 + 1000x¢] = cos [27 (10° +500) 1]

At the discontinuity. the amount of jump is g = 2. Hence. the phase discontinuity is kpna = 7. Therefore,
the carrier frequency is constant throughout at 10° + 500 Hz. But at the points of discontinuities. there is a
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phase discontinuity of = radians as shown in Fig. S5.1-2b. In this case, we must maintain k, < 7 because there
is a discontinuity of the amount 2. For kp > 7, the phase discontinuity will be higher than 2r giving rise to
ambiguity in demodulation.

Fig. 5.1-2

5.1-3

(a) ¢pm(t) = Acos [wet + kpm (1)} = 10 cos{10, 000t + kpm(t))
We are given that ¢pa(t) = 10 cos (13.000t) with kp = 1000 Clearly. m(t) = 3t over the interval |t] £ 1.

t t
(b)  wrwmff) = Acos [-:cl + k,/ m(a)da] = 10 cos [10.0001 + k,f m(a)da]

4

¢
Therefore k;/ mla)da = 1000/ m{a)da = 3000t
t
Hence 3t = / m(a)da = m(t)=3

5.2-1 In this case k; = 1000 and k, = 1. For

m(t) = 2 cos 100t + 18 cos 20007t and rir(t) = ~200 sin 100t — 36,0007 sin 20007t

Therefore nip = 20 and m}, = 36.0007 + 200. Also the baseband signal bandwidth B = 20007 /27 = 1 kHz.

For FM : : Af = kymp/2n = 10.000. and Bru = 2(Af + B) = 2(20.000 + 1000) = 42 kHz.
For PM : : Af = kpm’y/2n = 18,000 + 12 Hz. and Bpy = 2(AS + B) = 2(18.031.83 + 1000) = 38.06366

kHz.
5.2-2 ¢\ (1) =10 cos(wct + 0.1 sin 200071). Here. the baseband signal bandwidth B = 20007 /2% = 1000 Hz. Also,

pey

wi(t) = we + 2007 cos 2000x¢ :
Therefore. A = 2007 and Af = 100 Hz and Ben = 2(Af + B) = 2(100 +1000) = 2.2 kHz.

5.2-3 ppy(t) =5 cos(wet + 20 sin 1000xt + 10 sin 20007t).
Here. the baseband signal bandwidth B = 20007 /2x = 1000 Hz. Also,

w, (1) = we + 20,0007 cos 10007t + 20,0007 cos 20001

Therefore. Aw = 20,0007 +20.0007 = 40,0007 and Af = 20 kHz and Bem = 2(Af+B) = 2(20.000+1000) = 42
kHz.

5.2-4 The baseband signal bandwidth B =3 x 1000 = 3000 Hz.
For FM: Af=%2= g.x1 = 15.95] kHz and Brm = 2(Af + B) = 37.831 kHz.

For PM: Af= f-’;',',-‘a = 23:8000 _ 31 831 kHz and Bru = 2AS + B) = 66.662 kHz.

5.2.5 The baseband signal bandwidth B =5 x 1000 = 5000 Hz.
For FM : Af = 5470 = 20071 = ] kHz and Brv =2(Af + B) =2(2+5) = 14 kHz.
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For PM : To find BPM. we observe from Fig. $5.1-2 that ¢, (t) is essentially a sequence of sinusoidal pulses
of width T = 10~? seconds and of frequency f. = 1 MHz. Such a pulse and its spectrum are depicted in Figs.
3.22¢ and d. respectively. The bandwidth of the pulse, as seen from Fig. 3.22d, is 4= /T rad/s or 2/T Hz. Hence.
Bpn = 2 kHz

5.2-6 (a) For FM : Af = 472 = 200.0007x1 = 100 kHz and the baseband signal bandwidth B = #2* =] kHz.

Therefore
Bpum = 2(Af + B) = 202 kHz
For PM: Af=z"e — 10x23000% — 10 kHz and Bpu = 2(AS + B) = 2(10+1) = 22 kHz.

(b) m(f) = 2 sin 2000x¢. and B = 20007 /27 =1 kHz. Also m, = 2 and my, = 40007,
For FM : Af = 5472 = 200000723 = 200 kHz, and

Bpa = 2(Af + B) = 2(200 + 1) = 402 kHz

For PM : Af = ‘272 — 1024000t = 20 kHz and Bpu = 2(Af + B) = 2(20 +1) = 42 kHz.

(c) m(t) = sin 40007t and B = 40007/2x = 2 kHz. Also m, = 1 and mj = 4000~.
For FM : Af = X7z — 200.000mxl — 100 kHz, and

Bra = 2(Af + B) = 2(100 + 2) = 204 kHz

For PM : Af = 27k = 10240007 _ 20 kHz and Bpa = 2(Af + B) = 2(20 + 2) = 44 kHz.

(d) Doubling the amplitude of i () roughly doubles the bandwidth of both FM and PM. Doubling the frequency
of m(t) jexpanding the spectrum A(w) by a factor 2] has hardly any effect on the FM bandwidth. However. it
roughly doubles the bandwidth of PM. indicating that PM spectrum is sensitive to the shape of the baseband
spectrum. FM spectrum is relatively insensitive to the nature of the spectrum A (w).

5.2-7 From pair 22(Table 3.1). we obtain o=t e=s J/Te~*/Y. The spectrum M(w) = V7 e «?/4 is a Gaussian pulse.
which decays rapidly. Its 3 dB bandwidth is 1.178 rad/s=0.187 Hz. This is an extremely small bandwidib
compared 10 Af.

Also ity = —2te=t*/2_ The spectrum of ri(t) is M'(w) = jwM (w) = jﬁwe“"z/‘. This spectrum also decays
rapidiy away from the origin. and its bandwidth can also be assumed to be negligible compared to Af.
For FM : Af = 4472 = 8007x1 = 3 kHz and Bpy = 24f = 2x 3 = 6 kHz.

For PM : To find . we set the derivative of m(t) = —2te—t'/2 equal to zero. This yields

g2 _e2; ‘
m(t) = =2e /2 L 4207220 =t=

Sl

and ‘m;, = 'i'(Vlf) = 0.858. and

Af='37e - 8000720858 o 3437 kHz and Bpm & 2(Af) = 2(3432) = 6.864 kiz.

5.3-1 The block diagram of the design is shown in Fig. §5.3-1.

£21:635 M g=asim

£ =loo Kty £=125MHz
i ———0 §§-X} . S
o= 10Hy Af - 1250 He lre3s MRl AL (250 ka— AF =75k

) 10868 MUz

Fig. §5.3-1
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5.3-2
5.4-1

5.4-2

5.4-3

and

q-8MHz

Fig. S5.3-2

The block diagram of the design is shown in Fig. $5.3-2.

(a) epm(t) = Acos fwet + kpm(t)]

When this wpni(?) is passed through an idea) FM demodulator, the output is kprn (t) This signal. when passed
through an ideal integrator. yields kpm{t). Hence. FM demodulator followed by an ideal integrator acts as a PM
demodulator. However. if m(f) has a discontinuity, mm(t) = oo at the point(s) of discontinuity. and the system
wil fail.

(b) ¢rn(t) = Acos [uci+k,/ m(o)do]

-

When this signal ¢ra(?) is passed through an ideal PM demodulator, the output is kg f‘ m(a)da. When this
signal is passed through an ideal differentiator, the output is kym(t). Hence. PM demodulator. followed by an
ideal differentiator. acts as FA! demodulator regardless of whether m( t) has jump discontinuities or not.

Figure §5.4-2 shows the waveforms at points b, ¢. d. and e. The figure is self explanatory.

From Eq. (5.30). the Laplace transform of the phase error 8.(t) is given by

BO.(s) = —s+AK_H—(N)e'(S)
For A,(t) = k12, O,(s) = -E-} and

2k
B.(s) = $2s + AKH (s))

The steady-state phase error [Eq. (5 33)] is

2k
i t)=lims s) = =
Jim 0.(1) = lim s8.(x) = TPy = %0
Hence. the incoming signal cannot be tracked. If
s+a 2k
H(") - FREN then e'(s) - P {” + AKS:+¢)]
and
2k 2k

Jim Be(1) = lim 40e() = Iy TR G v a) | Ako

Iience. the incoming signal can be tracked within a constant phase 2k/Aka radians. Now. if

st +as+1 2k
H(s) = s a; Ry then Oe(s) = 2 -
« 2 [s + 4Kg.3+u+b)]
lim Be(t) = lim ©(s) = lim 2kes =
edn T i S )= s—0 53+ AK (s3 +ax + D)

In this case. the incoming signal can be tracked with zero phase error.
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Chapter 6

M

6.1-1

G.1-2

6.1-3

The bandwidths of ¢1(t) and g2(t) are 100 kHz and 150 kHz, respectively. Therefore the Nyquist sampling rates
for ¢1(t) is 200 kHz and for g2(t) is 300 kHz.

Also g1%(t) <= #=g1(«) » ;1(w), and from the width property of convolution the bandwidth of g12(t) is twice
the bandwidth of g;(t) and that of g2 {(t) is three times the bandwidth of ga(t) (se also Prob. 4.3-10). Similarly
the bandwidth of g;{t)gz(t) is the sum of the bandwidth of g:(t) and g2(t). Therefore the Nyquist rate for @’
is 400 kHz. for g27(t) is 900 kHz. for g1(t)ga(?) is 500 kHz.

(a)
sinc1007t) <= 0.01rect (ﬁ;)

The bandwidth of this signal is 100 = rad/s or 50 Hz. The Nyquist rate is 100 Hz (samples/sec).
(b)
sinc?(1007?) <=5 0.01A(3%z)

The bandwidth of this signal is 200 7 rad/s or 100 Hz. The Nyquist rate is 200 Hz (samples/sec).
(c)

sinc (1007) + sinc (50mt) «=> 0.01rect 0.01 (g8 ) + 0.02rect (7357)
The bandwidth of the first term on the right-hand side is 50 Hz and the second term is 25 Hz. Clearly the
bandwidth of the composite signal is the higher of the two, that is. 100 Hz. The Nyquist rate is 200 Hz
‘samples/sec).
(d)

sinc(10071) + 3sinc?(60mt) «=> 0.01 rect(5557) + % O5557)

The bandwidth of rect(giz) is 50 Hz and that of A(5f%;) is 60 Hz. The bandwidth of the sum is the higher of

the two. that is. 60 Hz. The Nyquist sampling rate is 120 Hz.
(e)

sinc(507t) <=+ 0.02 rect{ %)
sinc(100mt) <= 0.01 rect(58%5)

The two signals have bandwidths 25 Hz and 50 Hz respectively. The spectrum of the product of two signals is
1/2= times the convolution of their spectra. From width property of the convolution, the width of the convoluted
signal is the sum of the widths of the signals convolved. Therefore. the bandwidth of sinc(50x1)sinc(1007t) is
25 + 30 = 75 Hz. The Nyquist rate is 150 Hz.

The pulse train is a periodic signal with fundamental frequency 2B Hz. Hence, w, = 27(2B) = 4nB. The period
is To = 1/2B. It is an even function of t. Hence, the Fourier series for the pulse train can be expressed as

p1.(t) = Co+ Z Cncosnw,t

n=}

Using Eqs. (2.72). we obtain

1/168 5 [1/16B
no=Co=-.—]- dr=-l-, an = Cn = += cosnw.tdt=—2—sin(ﬂ). bp=0
To J_y/68 4 To J_,16m nw 4

Hence.
(1) = g(t)pr.(1)

e 5]
1 2 . (nnm
4q(f) + E 1 v sm( 1 ) g(t) cos nw,
3
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Fig. S6.1-4

spectrum is G(w) = 0.2 A(3§;) (Fig. §6.1-4b). The bandwidth of this
the Nyquist rate is 10 Hz, that is. we must sample the signal at a rate
=1/2B = 0.1 second.

9,‘3 O(38) repeating periodically with a period
Table for three sampling

6.1-4 For g(t) = sinc?(5n1) (Fig. §6.1-4a). the
signal is 5 Hz (107 rad/s). Consequently,
no less than 10 samples/s. The Nyquist interval is T

Recall that the sampled signal spectrum consists of (1/T)G(w) =
Hz. We present this information in the following

equal to the sampling frequency fu
rates: f, = 5 Hz (undersampling). 10 Hz (Nyquist rate). and 20 Hz (oversampling).

sampling frequency f, | sampling interval T G(w) comments
5 Hz 0.2 A (%) | Undersampling |
10 Hz 0.1 2A(s¢) | Nyquist Rate I
20 Hz 0.05 4A (5% ) | Oversampling |
_—___——'_'——‘._:——-——d

In the first case {undersampling). the sampling rate is 5 Hz (5 samples/sec.), and the spectrum +G(J) repeats
every 5 Hz (10= rad/sec.). The successive spectra overlap, as shown in Fig. §6.1-4d, and the spectrum G{w) is
ructed from its samples g(f) in Fig. S6.1-4c. If the

not recoverable from G(w). that is. g(t) cannot be reconst
sampled signal is passed through an ideal lowpass filter of bandwidth 5 Hz. the output spectrum is rect ()
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8.1-5

6.1-6

6.1-7

and the output signal is 10sinc (201}, which is not the desired signal sinc 2(571). In the second case. we use
the Nyquist sampling rate of 10 Hz (Fig. $6.1-4e). The spectrum G (w) consists of back-to-back. nonoverlapping
repetitions of 4G(w) repeating every 10 Hz. Hence, G(w) can be recovered from G(w) using an ideal lowpass
filter of bandwidth 5 Hz (Fig. 56.1-4f). The output is 10sinc 2(5xt). Finally, in the last case of oversampling
(sampling rate 20 Hz). the spectrum G(w) consists of nonoverlapping repetitions of #G(~) (repeating every
20 Hz) with empty band between successive cycles (Fig. $6.1-4h). Hence, G(w) can be recovered from G(w)
using an ideal lowpass filter or even a practical lowpass filter (shown dotted in Fig. $6.1-4h). The output is
20 sinc 2(37t).

This scheine is analyzed fully in Problem 3.4-1, where we found the bandwidths of 11 (t), yz(t}%,andy(lt_} to be 10
kHz, 5 kHz. and 15 kHz, respectively. Hence, the Nyquist rates for the three signals are 20 kHz, 10 kHz. and 30
kHz. respectively.

(a) When the input to this filter is #(t). the output of the summer is (t) — 8(t — T). This acts as the input to
the integrator. And, /(7). the output of the integrator is:

t t - %‘_
h(t) = / [b(r) = 8(r = T)}dr = u(t) — u(t — T) = rect ( = )
[J

The impulse response h(t) is shown in Fig. $6.1-62.
(b) The transfer function of this circuit is:

H(w) = Tsinc (“—-)22) e IwT/2

sinc iq-:
m 3

The amplitude response of the filter is shown in Fig. S6.1-6b. Observe that the filter is a lowpass filter of
pandwidth 27 /T rad/s or 1/T Hz. . :
The impulse response of the circuit is a rectangular pulse. When a sampled signal is applied at the input. each
sample generates a rectangular puise at the output. roportional to the corresponding sample value. Hence the
output is a staircase approximation of the input as shown in Fig. S6.1-6c.

and
[Hw)!=T

Figure S€.1-6

(a) Figure S6.1-7a shows the signal reconstruction from its samples using the first-order hold circuit. Each
sample generates a triangle of width 2T and centered at the sampling instant. The height of the triangle is equal
to the sample value. The resuiting signal consists of straight line segments joining the sample tops.

(b) The transfer function of this circuit is:

H(o) = Fh(n}=F {4 (-2-',-5)} = T sinc? (‘-*-27;)
Because H{w) is positive for all w. it also represents the amplitude response. Fig. $6.1-7Tb shows the impulse

response /(1) = A(gy). The corresponding amplitude response H{w) and the ideal amplitude response (lowpass)

required for signal reconstruction is shown in Fig. 86.1-7c.
(c) A minimum of T secs delay is re%uired to make h(t) causal (realizable). Such a delay would cause the

reconstructed signal in Fig. 56.1-7a to be delayed by T secs.
(d) When the input to the first filter is A(t), then as shown in Prob. 6.1-4. its output is a rectangular pulse

p(t) = u(t) — u(t = T) shown in Fig. §6.1-4a. This pulse p(t) is applied to the input of the second identical filter.
The output of the summer of the second filter is p(t) = p(t — T) = u(t) = 2u{t - T)+u(t=2T), which is applied
to the integrator. The output h(t) of the integrator is the area under p(t) — p(t — T). which. as

ity = / [u(r) = 2u(r = T)+u(r - 2T) dr = tu(t) — 2(t — Tu(t - T)+ (t —2T)u(t - M) =4 (-f—:jl)
0

sliown in Fig. $6.1-7b.

Assume a signal g{t) that is simultaneously timelimited and bandlimited. Let g(w) = 0 for |w| > 9n B. Therefore
glarect (z255) = g(<) for B' > B. Therefore from the time-convolution property (3.43)

g(t) = g(1) = [2B'sinc(27 B't)]
= 2B'g(t) » sinc(2nB't)
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6.2-1

6.2-2

6.2-3

6.2-4

6.2-5

6.2-6

Figure S6.1-7

Because g(t) is timelimited. g(t) = 0 for {t| > T. But g(t) is equal to convolution of g{t) with sinc(27 B’t) which
is not timelimited. It is impossible to obtain a time-limited signal from the convolution of a time-limited signal
with a non-timelimited signal.

(a) Since 128 = 27. we need 7 bits/character.
(b)For 100,000 characters/second . we need 700 kbits/second.
(a) 8 bits/character and 800 kbits/second.

(a) The bandwidth is 15 kHz. The Nyquist rate is 30 kHz.

(b) 63536 = 216 so that 16 binary digits are needed to encode each sample.
(c) 30000 x 16 = 480000 bits/s.

(d) 44100 x 16 = 703600 bits/s.

(a) The Nyquist rate is 2 % 4.5 x 105 = 9 MHz. The actual sampling rate = 1.2 x 9 = 10.8 MHz.
(b) 1024 = 2'0 55 that 10 bits or binary pulses are needed to encode each sample.
(c) 10.8 x 10° x 10 = 108 x 10° or 108 Mbits/s.

If ip is the peak sample amplitude. then

quantization error < (0'21)&,)" ) - g'lo‘%

Pecause the maximum quantization error is 521 = 3%‘ = -'l;f. it follows that
Mp o e = L=500

Because L should be a power of 2. we choose L = 512 = 29, This requires a 9-bit binary code per sample. The
Nvquist rate is 2 x 1000 = 2000 Hz. 20% above this rate is 2000 x 1.2 = 2400 Hz. Thus. each signal has 2400
samples/second. and each sample is encoded by 9 bits. Therefore. each signal uses 9 x 2400 = 21.6 kbits/second.
Five such signals are multiplexed. hence. we need a total of 5 x 21.6 = 108 kBits/second data bits. Framing
and synchronization requires additional 0.5% bits. that is, 108,000 x 0.005 = 540 bits, yielding a total of 108540
bits/second. The minimum transmission bandwidth is 12834 = 54.27 kHz.

Nyquist rate for each signal is 200 Hz.

The sampling rate f, = 2 x Nyquist rate = 400 Hz

Total number of samples for 10 signals = 400 x 10 = 4000 samples/second.
Quantization error < %’3 = 3’%%

Moreover. quantization error = & = e =T =2 = L=400
Because L is a power of 2, we select L =512 = 2°. that is, 9 bits/sample.
Therefore, the minimum bit rate = 9 x 4000 = 36 kbits/second.

The minimum cable bandwidth is 36,2=18 kHz.

ey
For a sinusoid. %‘J = 0.5. The SNR = 47 dB =50119. From Eq. (6.16)
P

2
S0 _ 31,’1“7,7‘}) =3L%(0.5) = 50119 => L =1828
o r

Because L is a power of 2. we select L = 956 = 28. The SNR for this value of Lis

ALANN
So am3(r) 2
20 _3prli ol = 3(256)%(0.5) = 98304 = 49.43 dB
No mp
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8.2-7

6.2-8

6.2-9

6.2-10

6.4-1

Fig. $6.2-7

For this periodic rn(t). each quarter cycle takes on the same set of amplitude values. Hence, each quarter cycle
contributes identical energy. Consequently, we can compute the power for this signal by averaging its energy
over a quarter cycle. The equation of the first quarter cycle as shown in Fig. $6.2-7 is m(t) = 4A/To. where A is
the peak amplitude and To is the period of m(t). The power or the mean squared value {energy averaged over
a quarter cycle) is

AAAAR Ta/4 2 2
m3(t) = 1 ’ (i-A-) dt = A
To/4 Jo To 3
mi A?/3
Hence. —m-P = ——A-é- =4
rd
The rest of the solution is identical to that of Prob. 6.2-6. From Eq. (6.16). SNR of 47 dB is a ratio of 50119. is

So
n'\v'o

Tt t) _ a2
= 3L T =3L%(1/3) = 50119 = L = 223.87
r

Because L is a power of 2. we select L = 256 = 2. The SNR for this value of Lis

So -rln.!(f)
B Y A 3(256)%(1/3) = 65536 = 48.16 dB
No ™mp

Here ;+ = 100 and the SNR = 45 dB= 31,622.77. From Eq. (6.18)

So 3L?

—V—o' = (—‘;—1—6-1')—2' =31,622.77 == L= 473.83

Becanse L is a power of 2. we select L = 512 = 2°. The SNR for this value of Lis

So _ 3(512)> _ acoongs =
N = 1ol — 36922.84 = 45.67 dB

(a) Nyquist rate = 2 % 10% Hz. The actual sampling rate is 1.5 x (2 x 10%) = 3 x 10® Hz. Moreover, L = 256
and p = 255. From Eq. {6.18)

So _ _ 3L* _ 3(256)° _
No  [n(z+ D2 (In256)% = 6394 = 38.06 dB

(b) If we reduce the sampling rate and increase the value of L so that the same number of bits/second is
maintained. we can improve the SNR (because of increased L) with the same bandwidth. In part (a). the
sampling rate is 3 x 10° Hz and each sample is encoded by 8 bits (L = 256). Hence. the transmission rate is
8 x 3 x 10° = 24 Mbits/second.

If we reduce the sampling rate to 2.4 x 10% (20% above the Nyquist rate). then for the same transmission rate
(24 Mbits/s). we can have (24 x 10°)/(2.4 x 10%) = 10 bits/sample. This results in L = 2'° = 1024. Hence. the
new SNR is

So _ 3L _ 3(1024)?
No  [in(p+ D2 (n 256)°

Clearly. the SNR is increased by more than 10 dB.

Equation (6.23) shows that increasing n by one bit increases the SNR by 6 dB. Hence. an increase in the SNR
by 12 dB (from 30 to 42) can be accomplished by increasing n from 10 to 12, that is increasing by 20%. '

= 102300 = 50.1 dB

(a) From Eq. (6.33)

Amux = ﬂi so that 1= %@%:—) = nm = 0.0783
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. _ a*B _ (0.0785)*(3500) _ -
(b) No = ?f: = ———_(3)(64000) =1.12 x 10

So 0.5 3
So___05 _446x10
No - T12x10-% x

AN 2
e ol 1 So _ __ 0383 __994x10°
So=m(t)=3F=3  sothat =T T4

(e) For on-off signaling with a bit rate 64 kHz, we need a bandwidth of 128 kHz. For a bipolar case. we need a
bandwidth of 84 kHz.

[ ]
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Chapter 7

/

7.2-1  For full width rect pulse p(r) = rect(-;-.-)
b

P(w) = T, sinc (ﬂ_?)

For polar signaling [see Eq. (7.12)]

=T sinc? (ﬁ)

Sy(‘”) = 2

For on-off case [see Eq. (7.18b)}

ol |5 20

41;’ b n=-co

=Zl’- sinc? (ﬂ) l+-2-”- E‘, é w-—gﬂ
4 2 Ty nice T

But sinc? (E’ETE)=0 for ©=2"" foralln=0,and =1forn=0. Hence,

|Pe)’
T

y

T
S,(w)= b sinc? %7-2’-) +=—5(w)

The PSDs of the three cases are shown in Fig. §7.2-1. From these spectra, we find the bandwidths for all
three cases to be R, Hz.

The bandwidths for the three cases, when half-width pulses are used, are as follows:

Polar and on-off: 2R, Hz; bipolar: R, Hz.

Clearly, for polar and on-off cases the bandwidth is halved when full-width pulses are used. However, for
the bipolar case, the bandwidth remains unchanged. The pulse shape has only a minor influence in the

bipolar case because the term sin’ (5’3&) in S, (w)determines its bandwidth.

5
Syt )

Po'd\"

Fig. §7.2-1
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7.2-2

7.2-3

7.2-4

T ] ‘- vd
)
1 o o 1 1 0
)'lt) ' H —l ! I-' =
L T s = — %
(® (b)
Fig. §7.2-2
l+—T:— l——?—
P(r) = rect T - rect TL—
2 2
and
P(w) = -b-smc (Q{L) ejﬂn/‘ +—Lsmc (91471) -jalyl4
= jTj sinc (i‘-’%) sin (E’%)
2
P
(0= 0L 21y et (21 s (22
) 4 4

From Fig. $7.2-2, it is clear that the bandwidth is ﬁT£ rad/s or 2R, Hz.
)

For differential code (Fig. 7.17)
N U o

To compute Ry, we observe that there are four possible 2-b1t sequences 11, 00, 01, and 10, which are
equally likely. The product a;ai+ for the first two combinations is 1 and is —1 for the last two
combinations. Hence,

Ry = lim —[ Y2 1)]

N-»xo

Similarly, we can show that R, =0 n>1 Hence,

s,y = 220 >| (Bt ()

(a) Fig. S7.2-4 shows the duobinary pulse train y{¢) for the sequence 1110001101001010.

(b) To compute Ry, we observe that on the average, half the pulses have a; = 0 and the remaining half
have a; =lor -1 Hence,

Ro= Jim x| 5+ Xo)-3

N
To determine R;, we need to compute ayag.y- There are four possible equally likely sequences of two bits:
11, 10, 01, 00. Sincebit0is encoded by no pulse(a; = 0), the product of aza;,) = 0 for the last three of

these sequences. This means on the average -3-2’- combinations have ayay,; = 0and only %’— combinations
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have nonzero a;a,;- Because of the duobinary rule, the bit sequence 11 can only be encoded by two
consecutive pulses of the same polarity (both positive or both negative).
This means a; anday,jare 1 and 1 or -1 and -1 respectively. In either case axdr+i = 1. Thus,

these %’- combinations have a;a;,) =1 Therefore,

R, = lim -}J—[—’Z—(x)\»%'-(o)]:%

N>

To compute R; in a similar way, we need to observe the product a;ag.2. For this we need to observe all
possible combinations of three bits in sequence. There are eight equally likely combinations: 111, 101,
110, 100, 011, 010, 001, and 000. The last six combinations have cither the first and/or the last bit 0.

Hence, agay,; = 0 for all these six combinations. The first two combinations are the only ones which
yield nonzero a;aj..2- Using the duobinary rule, the first combination is encoded by three pulses of the
same polarity (all positive or negative). Thus a; and a;, are 1 and 1 or -1 and -1, respectively, yielding
ayags2 =1 Similarly, because of the duobinary rule, the first and the third pulses in the second bit
combination 101 are of opposite polarity yielding a3ay.2.= -1 Thus on the average, a;ay,2 =1 for

-]:— terms,»1 for %’- terms, and 0 for§4ﬁ terms. Hence,

1| N N N
R, = lim —|=(1)+—(=1)+=(0 =0
27 \oe N[s()+s( " ()]
In a similar way we can show thatR, =0 n>1,and from Eq. (7.10c), we obtain

2 2
Sy(w)= L%%?L(l +coswly) = |P(;;)‘ cosz(-a-’;l)

1110001101001010

123 nonn A n o.

SN

A

o M7 /e o=
Rp/2 Re s Hy—
Fig. S7.24

For half-width pulse P(f) = rect(2/T3).
Sy(w) = %’-sim:2 (f%i) cos? (22!1)
From Fig. $7.2-4 we observe that the bandwidth is approximately R /2 Hz.

7.3-1 From Eq. (7.32)
(1+7)6000 1
4000 = ——>r =3
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- AV mp
7.3-2  Quantization error - = A <001m, = Lz100
(a) Because Lisapower of 2, weselect L =128 = 27

(b) This requires 7 bit code per sample. Nyquist rate=2x 2000 = 4 kHz for each signal. The sampling
rate f; =125x4000 =5 kHZ.
Eight signals require 8 x 5000 = 40,000 samples/sec.
Bit rate = 40,000 x 7 = 280kbits/s. From Eq. (7.32)
e (1+7)Ry _12x280x10°
2

=168 kHz.
T 2

73-3 (8) By =2R, = R, =15kbits/s.
(b) BT = Rb = Rb = 3 kbits/s.

(© Br= %-’- R,. Hence, 3000 = '—? R, = R, = 48 kbits/s.
d) Br = Rb = Rb = 3 kbits/s.
(¢) By =Ry = R,=3kbitshs.
7.3-4 (a) Comparison of P(w) with that in Fig. 7.12 shows that this P(w) does satisfy the Nyquist criterion with

@y =2a% 10 and » = 1. The excess bandwidthw, = 7 x 106,
(b) From Table 3.1, we find

p(r) = sinc? (7 x10%)
From part (a), we have w; =27 x 10° and R, = 10°. Hence, Tj = 1075, Observe that
pnT)=1 n=0
=0 nz0
Hence P(t) satisfies Eq. (7.36).

(¢) the pulse transmission rate is -;_— =Ry = 10° bits/s.
b

7.3-5  Inthis case %”— =1MHz. Hence, we can transmit data at a rate Ry =2 MHz.
Also, By = 12 MHz. Hence, from Eq. (7.32)
61t 108 r=
12x10° == (2x10%)=>r =02

736 f, =700kHz. Also,-l-;L=500kHz and f, = 700-500 = 200 kHz.

Hence,r = R{’;z =04 and f) =%-f, =500 - 200 = 300 kHz.

7.3-7  To obtain the inverse transform of P(w), we derive the dual of Eq. (3.35) as follows:

g(t-T) o Gw)e™ /™ and g(1+7) = G(w)e™®
Hence,
gt +7)+g(t - T) & 2G(w)cosTo M

Now, P(w)in Eq. (7.34a) can be expressed as

1 @ 1 o @
= e — t — — 2
P(o) 2"”{4;:1:,,)”‘2"{4;&,,)“ 2R,,) @
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Using Pair 17 (Table 3.1) and Eq. (1) above, we obtain
P(t) = Rysinc (27 Ryt)+ &-smc [Zsz(r + E—R:)]+ =b sinc [ZzR,,(t - ;;{—J}

= Rb[sinc (27:R,,t)+ Lsinc (27 Ryt + :r)+ L sinc (27 Ryt - 7)

[ sin@7Ry) WL sm(27rR1,1+;r) 1 sin(2x Ryt - x)

- 27Ryt 2 2xRy+x Y2 2aRyt-x
sin(27Ryt) 1 sin(27Ryt) 1 sin(27 Ryt)
2Ry 2 2Ryi+m 2 2xRyt-n

1/2 1/2
27 Ryt (2xRbt+;r) (27 Ryt - )

=R, sin(Zszt)[

= Rb sin(21r Rbt
27 Ry ~4R2)

2Rb cosmT Rbl sin ﬂzﬁg Rb COSﬂzkzbf sinc (jr Rbl)
27 Ryt(1-4R,2%)  1-4Ry

7.3'8 P(w) = ico{ ) t(_?__)z-jm/ 2&
2Rb p 4 Rb
1 ) [ Jol2Ry | g-jo/2R ]e- Jol2Ry
e

(2’*1,
- _‘_m o\, L el 2 leio2R
Rb 2% Rb Rb vy 3 Rb

Hence,
plt) = sinc (7 Ryt) +sinc [”Ro(t _ ;}_)]

b

_sinTRyt sin( Ryt - 7)
Ryt ARyt -x

sintRyt _ sinzARp? _ sin 7 Ryt
xRyt mRyt-x  mRy(1- - Ryt)

......

7.3-9  The Nyquist interval is 7, = -Rl— =T;. “The Nyquist samples are p (¢nT) forn=0,1,2,
b
From Eq. (7.16), it follows that ‘
20) = p(T3) =1 and p(nTp) = 0 for all other .

Hence, from Eq. (6.10) with 7, = Ty, and B =—?—

=L
2%’
p(t) = sinc 7 Ryt +sinc [;rkb(t - 7;—;)]

_sin ARyt sin 7Ryt __ sin ARyt
AR, AR-x " zR(1- Ryt)




The Fourier transform of Eq. (1) above yields

P(@) = ——rect] —2— o Vrectl 2 |e-iolR
Ry \27Ry) Ry \27R,

=L reetd =2 [e JjoI2Ry |, ~j0i2R ]e- jol2Ry
Rb p¥ 4 Rb

2 cod @ | rectt —2— |ei0l2Rs
Rb 2Rb 2)!Rb

7.3-10 (a) No error because the sample values of the same polarities are separated by even number of zeros and
the sample values of opposite polarities are separated by odd number of zeros.
(b) The first sample value is 1 because there is no pulse before this digit. Hence the first digit is 1. The

detected sequence is
11000100110110100

7.3-10 The first sample value is 1, indicating that the transmissions starts with a positive pulse, that is, first digit 1.
The duobinary rule is violated over the digits shown by underbracket.

12000-200-20200—20220-2

Following are possible correct sample values in place of the 4 underbracket values: 22 0-2,0r20-2 -2,
or 00 0 -2, or 2 00 0. These sample values represent the following 4 digit sequence: 1100, or 1000, or
0100, or 1010. Hence the 4 possible correct digit sequences are

1101001001x,x,x3x,11100
where X,X;X;X, is any of the four possible sequences 1100, 1000, 0100, or 1010.

7.4-1 S =101010100000111
From example 7.2

T=(10 pPepepten’en®enen? oD eD%e.)s

R=(10 D3ew5)r
T = 101110001101001

R = 101010100000111 = S r
D
742 S =101010100000111 Ee)
T-(lepzeD“eoﬁeosebweb‘zeb“a..)s A
_?———'
R=(1©D?)T (secFig. §7.42) T
T = 100010000000110
R =101016100000111 = § Fig. §7.4-2

743 S=101010100000111
T=(1$D®DZGD4 op'opte D’ oD eD”)s

R=(1©D® D*)T (see Fig. §7.4-3)

7 =110111101001011
R =101010100000111=S
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7.5-1

7.6-1

7.6-2

Fig. S7.4-3

From Eg. (7.45), we obtain
.1 1 03 -007]"'[0] [-0328
co |=| 01 1 03| |1]|=]| 107
¢ | |-0002 0. 1 | o] |-0113

@ 2Z=5

n
(i) Forpolarcase P, =(Q(5)=287x 10”7
(ii) Foron-offcase P, = Q(5/2)= 000621
(iii) For bipolar case F, = 150(5/2) = 0.009315
In the following discussion, we assume A, = 4, the pulse amplitude.

R

(b) Energy of each pulse is £ = Asz /2 and there are R;, pulses/second for polar case and >

pulses/second for on-off and bipolar case. Hence, the received powers are

2 2 (00015)°
Proia =12_T¢R,, =£2.=(__—)—-=1.125x10'°
2 2
Py = Ab xR A 0s625x1078
2 2 4
2 2
Phipota =:‘_2_Tb.x-%¢- = i:-=05625x 1076

(c) For on-off case:
We require P(€) = 2.87 x 107 = (4, / 20,). Hence,
Apl2op, = S5and 4, =100, = 0.003

A2 (0003)?

Popeoff =5~ = =225x107
For bipolar case:
A
P(e)=287x107" =150(4, /20,,) = == =5075
n
Hence
A=Ay, =5015x20, = 0.003045
and
A2 -6
&ipollt =T =231x10
For on-off case:
A
P=10%sg —‘1-) =—L2.2475
20, 20,
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o, =107 = 4, 2(475(2x107%) = 95x 1073
For on-off case, half the pulses are zero, and for half-width rectangular pulses, the transmitted power is:
S = l(Apz ] i Apz ) (95 -~ 3) =2256 %1075 watts.
2] 2 4 4
There is an attenuation of 30 dB, or equivalently, a ratio of 1000 during transmission. Therefore
Sy = 10005; = 22.56 % 107 watts

7.6-3  For polar case:

A4,)_ 4
P, =106 =g 22 | 22 =475 4, =475%107
n c'l

For polar case with half-width rectangular pulse:

A)? 1 N2, -6
S = B |=—(45x10 =1128x 107" watts
2 2

Sr =(1000)(1128x1076W) = 1128 1073 watts

For bipolar case:

4 A
P =10%=150 -2 | L - 4835 and 4, = 4835x2x107% = 9.67x1073
20, 20,

For bipolar (or duobinary), half the pulses are zero and the receive power S; for half-width rectangular
pulses is

Apz 1 ' -3 2 -6
S; = —=—=—(967x10 =2338x10" walts
el

Sy = (1000)S; = 2338 x 107> watts

7.7-2  Sampling rate = 2 x 4000 x 125 = 10,000 Hz.
Quantization error = :nz,; =0.00im, = L =1000
Because L is a power of 2, we select L = 1024 = 210 Hence, n=10 bits/sample.
() Each 4-ary pulse conveys log, 4 = 2 bits of information. Hence, we ne¢=c112(l =5 4-ary pulses/sample,
and a total of 5 x 10,000 = 50,000 4-ary pulses/second. Therefore, the min_imum transmission bandwidth is

50,:00 =25kHz

_ R,,(12+r) ) 50,00(2)(1.25) - 3125 KHz

©) Br

7.7-3  (a) Each 8-ary pulse carrieslog;8=3 bits of information. Hence, the bandwidth is reduced by a factor of

3. ,
(b) The amplitudes of the 8 pulses used in this §-ary scheme are+A/2, £34/2, +54/2,and 74 /2.
Consider binary case using pulses +4/2. Let the energy of each of these pulses (of amplitude £4/2)

be E;. The power of this binary case is
Rjinary = EpRp
Because the pulse energy is proportional to the square of the amplitude, the energy of a pulse :t%‘- is

szb. Hence, the average energy of the 8 pulses in the 8-ary case above is
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2 2 1 2
afser? oo 13) +(:3) A1) |
Egy = - =21E,
Hence,
Bay=E x pulse rate = 21E) x-’% =TEuR; .
Therefore,
Ps-nry =1 ﬂainuy

6 = 4 bits. Hence, we need

77-1 () M =16. Each 16-ary pulse conveys the information oflog, !

‘2’300 = 3000 16-ary pulses/second.
Minimum transmission bandwidth = -3-%09- =1500Hz
(b) From Eq. (7.32), we have R, = 1—3-; Br. Hence,

3000 = 1—22-87- = Br =1800Hz.

(a) For polar signaling, R, bits/second requires a bandwidth of R, Hz. The half-width rectangular pulse of

2
(g -4
2) 2 8

2
_.LRb- A8

Hence the average energy of the M-ary pulse is
(M- E,,]

7.7-4
, A
amplitude 3 has energy

The power Pis givenby P= EyRy =

(b) The energy of a puise :I:—k;- isk Eb
Ey= -;4-[25,, +2(£3)? +2(28) +....

M-2

22 ¢ k)

M o0

M2 -1
= E,
3 b
require only R M-ary
logy M

Each M-ary pulse conveys the information of log M bits. Hence we

pulses/second. The power Py, is given by
E (M2 -1)R,

Py = =
MTloga M 3loga M

T 24logy M 24logy M

7.7-8  Each sample requires 8 bits (256 = 2') . Hence: 24,000 x 8 = 192,000 bits/sec.

BT =30 kHz
R= —-2— Br = —(30 000) = 50,000 M-ary pulses/sec.
000 bits/sec. Hence, each pulse must

We have available up to 50, 000 M-ary pulses/second to transmit 192,

192,000
transmit at least = = 3.84 bits.
smit at leas ( 50’ ) 1




7.8-1

7.8-2

7.8-3

7.9-1

=» choose 4 bits/pulse
= M = 16is the smallest acceptable value

-
(a) Baseband polar signal at a rate of IMbits/sec PSD o PSK
and using full width pulses has BW = iMHz. PSK
doubles the B# to 2MHz.
(b) FSK can be viewed as a sum of 2 ASK signals.
Each ASK signal BW = 2 MHz. The first ASK signal . .
occupies a band f,o £ 1 MHz, and the second ASK ‘ I _‘ { l
signal occupies a band f,) +1MHz. Hence, the :: L
bandwidth is 2 MHz + 100 kHz =2.1 MHz e \Hookkal wwa

Fig.57.8-1

(a) A baseband polar signal atarate 1 Mbits/sec using Nyquist criterion pulses at r = 02 hasa
BW=-(-1-;—r)Rb -%xlo‘ =60x10°Hz.
PSK doubles B# to 1.2 MHz.

(b) Similar to Prob. 7.8-1.
BWggk = 0.6 MHz +0.6 MHz +100 kHz
BWFSK =13 MHz
& PsD of Fs¥
logg M =2 forM=4.

We need to transmit only 0.5 x 10% 4-ary pulses/sec
(8) BW is reduced by a factor of 2.

B WFSK =1 MHz . N
(b) In FSK, there are four center (carrier) frequencies M } | s
{c < 4 C {(.‘
Futs fez» f3» 804 Sy, each separated by 100 kHz. x 10y
Since ASK signal occupies band f, +0.5 MHz, the total l(__ 300 kiR
bandwidth is
0.5 MHz +0.5 MHz +100 kHz + 100 kHz + 100 kHz = 13 MHz. +IMKE
Fig. S7.8-3
&) 1 f.= 2800 rotations fiec
mLt ) y RN
C ) —— | [ £ } s —>
/ Codesr
mylt) ,__\.
~ ” T

Fig. oT.4-1 (@)
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m, ﬁ) > ~
v
d % \ Quantizer
| ; ¥ e
\ {C / ;

Vﬂ;l‘t) >
~
’,'E RN \ 'r 4. = 7200 roladioms Lo
"‘9&{)——"—& ‘&/9 4’
N

mq. l{) >

Fig. (b)
Fig. §7.9-1

Either figure (a) or (b) yields the same result.
m;(¢) has 8400 samples/sec.

my (1), m3(¢), my(r) each has 2800 samples/sec.
5 Hence, there are a total of 16,800 samples/sec.

) with a commutator speed of 700 rotations/sec. This combined

292 First, we combinemy(¢), my(r), and my(t
ons/sec, yielding the output of

signal is now multiplexed with m(¢) with a commutator speed of 2800 rotati

5600 samples/sec.
i) > ' Commubalon S?&J
/’ E'X‘ N ‘FC; 2200 rofat(ons
\ \ >y Sec
> ~ V4
y ~N
'
:?_‘;.2___{ v
‘\{% ’
melt) - g
I 4
Fig. §7.9-2
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7.9-3

£,= Taco £, = 21602 rpe
S 4.3 Rb/s o= 2 rpe
m'(‘t'\ ~ Ruantizg €
T s | cdgec | PN
3 2
m:lf\ 'S ‘&uag‘bsﬁ‘ Qtek’bk‘f/ 'Fc, *—
__9——9;.:2‘“0 | _osger | | \ output
*"‘gle‘3 > @vug‘h?f 20¢ Rifs t\ ! '2:6 Rb/s
ey c:oak’r ._* X
\ 7
- e
£, 2400
’ﬂ'hl:;) 3 s 5'(«.14&'\1‘3"‘ —-2;60,5
CodeV
(2O
ANerngte arrangemenl
m, 4 ¢48kb/s
e = mme - g P
R N
g 2)6 kole / &f“* PRl ol
Cee - - 1 ( >
— PN \ JEae kbls
’ fe. '
f 3&3,\ ;
"‘,3[-43 2)ekbs ,
R p—— - - -~
My 1€) 214 Rble — " (b)
-— - - - —— '

Fig §7.9-3
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Chapter 8 Exercises

8.1-1 If a plesiochronous network operates from Cesium beam clock which is accurate to + 3 parts .
in 1012, how long will it take for a DS3 signal transmitted between two networks to become out' +. ’

of sync if a 1/4 bit length time error results in desynchronization?
Solution: A DS3 bit is transmitted in l/(44.736-106) =2.235336-10" sec. In the worst case,
both network clocks will be out of synchronization by 6 parts in 1012,

2.235336-10°%/(6-10''2) = 3922.27 sec/bit or 980.57 sec/ ¥ bit

8.1-2 For the bit stream 011100101001111011001 draw an AMI waveform.
Solution:

e e

Note that typically, for illustrative purposes, the waveform is given as

i it aai il falisal

8.1.3 For the following waveforms, determine if each is a valid AMI format
for a DS1 signal. If not, explain why not.
a.

4 4 i & & N 5 A b 2 " " " e & " j " " " & :
_— s v T’ A v v T . T ¥ v T T v v 4 | pmemn £ v T T

Solufion: No. 16 0’s violation

AU

Solution: No. bi-polar violation

C.
ILI——:C::::?J.—!—C

Solution: No. 1's density violation

d.
Iy A & 3 3 N e 5 | l & " " & " 'y " A & M 3 2 e " " "
T T Y T T v T ' — ) 4 T v v T Y T T I—l'——r 4 v Y 1

Solufion: Yes

+

g
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8.1-4 a) You have received the following sequence of ESF framing pattern sgguencé bits
...00110010110010110...

Is this a legitimate framing bit sequence in order to maintain

synchronization between the T1 transmitter and receiver?

Yes No,

If yes, why? If no, why not?

Solution: No. The bit sequence 0011 cannot be in an ESF framing bit sequence.

b) The following T1 AMI signal is received:

Is this an acceptable T1 signal?
Yes No
a. If yes, explain.
b. If no, explain why not (what, if any, DS1 standards are violated) and

draw on the figure the AMI waveform which would be transmitted by the DSU?
Solution: No. 16 0's violation. The 16 0’s will be replaced by a pattern of 1’s by the
DSU.

8.1-5 The signal 110100600000000000001 is received by the DSU in a T1 data stream which uses a
B8ZS format. Draw the output of the DSU for this signal? The first 1 is already drawn.
Show the bit stream which is substituted by the DSU.

Solution:

M — U

8.1-6 T-1 synchronization at two distant Jocations is controlled by separate crystal controlled
oscillators which differ in frequency by 125 parts per million. If the terminal equipment doesn't
maintain sync in how many complete D4 superframes will the faster oscillator have generated (at
most) one more time slot (8-bit) than the slower oscillator ? Circle the correct answer.
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a)s

b) 10

c) 15

d) 20

e) None of the above - if "none”, what is the number of D4 superframes before an extra time slot
is generated?
Solution: e) The faster oscillator will generate 125-10°1.544-10° = 193 bits per second more
than the slower oscillator. This is one frame/sec = 24.125 time slots. Hence, a time slot
difference will be generated in 1/24.125 = 0.04164498 frames or 0.0034704 superframes.

8.1.7 Two plesiochronous digital networks, A and B, utilize Cesium beam clocks accurate to 3
parts in 10". The networks are operated by independent long distance companies and are
synchronized to each other by means of a UTC signal.

a. If a company leases a T1 line with D4 framing which is terminated at one end in
network A and at the other end in network B, how often must the networks be resync’d to
each other 1o avoid a framing bit error in the customers T1 signal in the worst case? {You
may assume a framing bit error occurs when the two networks are out of sync by 2 1/2 of
aT1 "bit time".}
Solution: A T1 bit time is l/(1.544~106 )= 6.47668-10 sec/bit. In the worst case, the
two clocks would be off by 2:3 = 6 parts in 10'3 or 6-10™* errored bits per bit transmitted.
Hence, 6.47668-10°7 sec/bit / 610" errored bits per bit = 1.07945 10° seconds per errored

bit or 5.39723-10° seconds per errored half-bit.

b. UTC operates via GPS satellites which are approximately 23,000 miles above the Earth.
How long, in terms of T1 bits, will a correction signal take to be transmitted to
the network switches? '
Solution: The speed of light is approximately 186000 miles/sec.
23000x2 = 46000miles up and down. 46000/186000 = 0.247 sec
0.247x1544000 = 381850 bits
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Chapter 10

/

13+13 1
52 2
1+1 1
b) P(black = —=
() P(black queen) 5 "6
3

13

10.1-1 (a) P(red card) =

(c) P(picture card) = -]5-25 =

4 1

@ PN=5=5
20 3
(e) P(n$5)=§l-l§

10.1-2 (a) S=4occursas (1,1,2),(1,2,1),2,1,1). There are a total of 6 x 6 x 6= 216 outcomes.
Hence, P(S =4) = 53—6 = ;,1—2-
(b) S =9occursas(1,2,6), (1,3,5), (1,4,4), (1,5,3), (1,6,2), (2,1,6), (2,2,5), (2,3,4), (2,4.3), (2,5,2), 2,6,1),
(3,1,5), (3,2,4), (3,3,3), 3:4.2), (3,5,1). (4,1,4), (4.2,3), @&,3,2), (4,4,1), (5,1.3), (5,2,2),
(5,3.1),(6,1,2), (6,2,1)
P(s=9)= 2=
(¢) S =150ccurs as (3,6,6), (4.5.6), (4,6,5), (5,4,6), (5,5.5), (5.6,4), (6,3,6), (6,4,5), (6,5,4), (6,6,3)

10
P(s=10)=27

10.1-3 Note: There is a typo in this problem. The probability that the number i appears should be ki not &;.

[
1= Zki=l¢+2k+3k+4k+5k+6k=2lk=>k=-il-l—
i=1

P(i)=-2'—l (i=1,23,4,56)

10.1-4 We can draw 2 items out of 5 in 20 ways as follows: 0,0, 0,05, 0,P;, 0,P3, 0,04, 005, 0,P,, 0;P;, 050, 050,
05P,, 0;P,, P\0,, P03, P,03, P\P3, P,0,, P;0,, P30, P,P). All these outcomes are equally likely with
probability 1/20.

(i) This event E; = 0, A, U0, A U0, AU0; A, U03 AU0 BUAD UR0,UR03UROUP0UPR0;
12 3
Hence, P(E|})=—=7¢
ence, P(E;) =3
(i) ThiseventE; = AARURA

2 1
Hence, P(Ez) = E = 1—0

(iii) This event Ey= 0‘02 U0|03 U020| U0203 U030‘ U0302
6 3
H P & —=—
ence, PE3)=26=10
(iv) This event Eq = Ey UE;and both E, & Ejare disjoint.
4

Hence, P(E4) = P(Ez)+ P(E3) =.13=%
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10.1-5 Letxg, be the event that the first chip is oscillator and x5 be the event that the first chip is PLL. Also,

10.1-6

1001'7

10.1-8

let xo, and xp represent cvents that the second chip drawn is an oscillator and a PLL, respectively. Then
P(l oscand 1 PLL) = P(Xol ,x&)+ P(XH ,sz)

= Plxo,)P(xn}ro, )+ Pxa )Plzo; la)
B

Using the notation in the solution of Prob. 10.1-5, we find:

@ P("Oz"ﬂ)"'%

(a) Wecan have(‘g ) ways of getting two 1's and eight 0's in 10 digits

0y 10!
(2)'2!31 43
’ . ’ 2 3 10 45 45
P (two 1’s and eight 0's) = 45(05) (0.5) = 45(05) =39 " 1034

(b) P(at least four 0's) = 1-[ P(exactly one 0)]+[ P(exactly two 0 s)]+[ P(exactly three 0 )]

0 5
pone 0) ={10)05)"0 = — = —
(one 0) =('7)03)" = 727 =535
45
p(two 0's) =('9)05)"0 = —
(wo 0's) =('2)03)" = 722

120

1024

45 120 )= 849
1024

P (three 0s) = (')(05)'° =

P(at least four 0's) = l-(—s— + +
512 1024 1024

(a) Total ways of drawing 6 balls out of 49 are

9\ _ 49!
(%) = oz = 13983816
1

Hence, Prob(matching all 6 numbers) = 13983816

(b) To match exactly 5 number means we pick 5 of the chosen 6 numbers and the last number can be
picked from the remaining 43 numbers. We can choose 5 numbers of our 6 in(g) = 6 ways and can choose
one number out of 43 in (413 ) = 43 ways. Hence, we haved3 x 6 combinations in which exactly 5 numbers
match. Thus,

P (matching exactly 5 numbers) = _A3x6__ 1845x1075
13983816

(¢) To match exactly 4 numbers means we pick 4 out of the chosen 6 number in ( 2) = 15 ways and choose

2 out of the remaining 43 numbers in(‘%) =903 ways. Thus there are 15x 903 ways of picking exactly 4

numbers out of 6 and

. 15x903 -4
tch ctly 4 = ———— = 9686 x 10
P (matching exactly 4 numbers) 13983816 9.686 x
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(d) Similarly, we can pick three numbers exactly in (3)(‘33) = 20 x 12341 = 246820 ways. Hence,

246820

—————— = 001765
13983816

P (matching exactly 3 numbers)=

10.1-9 (a) Let f represent the system failure. Then
P(7)=(1-001)"° = 090438
P(f)=1- P(f)=00956
®) P(f)=099and P(f)=001

If the probability of failure of a subsystem s; is p, then
P(f)=(1-p)" or 099=(1- p)*° = P=00010045

10.1-10 If / represents the system failure and f,, and f; represent the failure of the upper and the lower paths,
respectively, in the system, then:

® P = PUfe) = PUPUL) = [P
P(f) =1- P(7,) =1-(1-001)"" = 00956
and
P(f) = (0.0956)° = 0009143

Reliability is P(f) = 1- P(/) = 09908
(b) P(f)=0999

P(f) = 1-0999 = 0001

P(f,) = +/0.001 = 00316

P(7,)=(1- P)'® =1-00316 = P = 0003206

10.1-11 Let P be the probability of failure of a subsystem (s, or 53).

For the system in Fig. a:
The system fails if the upper and lower branches fail simultaneously. The probability of any branch not

failing is
(1-P)1-P)=(1- P)2 . Hence, the probability of any branch failing is1-(1- P).
Clesrly, Py , the probability of the system failure is Py = [l ~(1- Py Il -(1- p)’] 24P? P<<l

For the system in Fig. b:
We may consider this system as a cascade of two subsystems x; and x; , where x, is the paraliel combination

of s, and s;and x, is the parallel combination of s ands;. Let Py(x;) be the probability of failure of x,.
Then <
P(n)= Py(x;) = P?
The system functions if neither x| nor x; fails. Hence, the probability of system not failing
is(1- P2)(1- P?). Therefore, the probability of system failing is
P =1-(1- P2)1-P?)=2P - P 22P? P <<l
Hence the system in Fig. a has twice the probability of failure of the system in Fig. b.
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10.1-12 There are( ) = 2598960 ways of getting 5 cards out of 52 cards. Number of ways of drawing 5 cards of

the same suit (of 13 cards) is( ‘3) =1287. There are 4 suits. Hence there are 4 x 1287 ways of getting a

flush. Therefore,
4x1287

2598960

=19808 %1073

P(flush) =

10.1-13 Sum of 4 can be obtained as (1,3), (2,2) and (3,1). The two dice outcomes are independent. Letx, be the

outcome of the regular die and x, be the outcome of irregular die.

Pay (43)= P (0P, (s)——x1=,‘8

Px; x (2,2)= Py, (2)1’_,,2 (2) =-— x 0=0
lexz (3vl) = Px| (3) (1) = z g = 316

Therefore P,(4)= T +—3!g=l—12-

Similarly,
P(8)= P, (14)+ P.,,(23)+ P, (32)+ ., (4))
1 1 1 1 1 1 1

2 X0t =X =t =X+ =X == -
6

3 6 6 6 12

10.1-14 B= ABUA‘B

P(8) = P(4)P(Bl4) + P(4°)P(B|4°)
-()2)3)3)-=
P(4B) (EIEX%) 1

P(B) 1 sl
26

P(4|B) =

10.1-15 (a) Two 1's and three 0’s in a sequence of 5 digits can occur m(g) =10ways. The probability one such

sequence is
P =(08)2(02)° = 000512

Since the event can occur in 10 ways, its probability is
10x 0.00512 = 0.0512

(b) Three 1's occur with probability (§ )(08)*(02)* = 02048
Four 1’s occur with probability (§ }08)* (02)" = 04096

Five 1’s occur with probability (3 )(08)*(02)° = 03277

Hénce, the probability of at least three 1's occuring is
P = 02048 + 04096 + 03277 = 09421

10.1-16 Prob(no more than 3 error) = P(no error) + P(1 error) + P(2 error) + P(3 error)
= (1- BY'® +(10)2.(- ) + ()220 ) + ()20 £)”

= (1-1007,)+ 1002, (1-99 7, )+ 4950P,2(1-98F,) + 1617007, (1-97F,)
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10.1-17 Error can occur in 10 ways. Consider case of error over the first link
P.(correct detection over every link) = (1- A )(1- A)--(1- Py)
Pg =1~ P, =1-(1- RY1- A)..(1- Ao)
= 1-[1 - (P, + R +..+Rg) + higher order terms]
=P +A+.+Pg P <<l

5 ]
10118 Pe)=Y(3)R/0-R) =1023(1- B,)? +5P4(1-R)+ P
J=3
=10P3(1-P), P <<l

10.1-19 (a) P(success in 1 trial) = ;% =01
(b) P(success in § trials) = 1 - P(failure in all 5 trials)
=1- Py, Py, P, Py, Py
Py, = Prob(failure in 1* trial) = 9/10
Py, =Probi(failure in 2** trial)=8/9
Similarly, Py, =7/8, Py, =6/7, and P, =5/6

Hence, P(successin$ trials) = 1 -(-?-IEXZXQIE) =1~ 3. 05
I0OAIABATAG 10

10.1-20 Let x be the event of drawing the short straw and the P,(x) denote the event that ith person in the sequence

draws the short straw.

Now, A(x)=0.1
Py(x) = Prob(1* person does not draw the short straw) x Prob(2™ person draws the short straw)

1 9VY1
= [l - Pl(X)]—g- = (EX;) =0.1
nor 2* person draws the short straw) x Prob(3" person draws the short straw)
| 8Yl1
- [1-A)- Al =530

Similarly, P4(X) = Ps(x) == ﬁo(x) =01

Similarly,
Py(x) = Prob(neither 1

10.1-21 All digits are generated independently
(@) P(all 10 digits are 0) = (03)'°
(b) There are ( ‘3 ) ways of arranging eight 1’s and two 0's. Hence,
Preight 1's and two 0'5)=('$)(07)(03)?

(c) P(at least five 0’s)= P(five 0’s)+P(six 0’s)+...+P(ten 0’s)
=( ‘g’)(m)’(os)5 +(*9)0n)* (03)° +(‘9)(o.7)3(03)7 +(‘8)(o.7)2 (03)* +("8)07)(03)° + (03)'

1021  P,(0) = Py (1,0)+ Py (0.0) = Px(l)Pylx(Oh)-o- P,(0)Pyx (0l0)
= 06x01+04[1- P, (1f0)] = 006+032 = 038
P,(1)=1- P,(0) =062
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1022 (a) Py (llt)=

10.2-3

10.24

Pi(W)A()  (1-R)O

() Px|y(o|1) =1- ley(lll)

R (-QFR+(-R)Q

(note that P, (1) and Py(0)are derived in Example 10.10)

(») P(X 2 l) = Ilc%-xe““b = %

10.2-5

10.2-6

(b) Prob(-1<x52)= Iol—-;—xe’dx+jz-;-xe"dx= l-é-;%—

- e
21 .. 3
(©) Prob(x s-2)= [ -se"dr =

£ (4) o
P () 4+ 2 @ F; (9)
o5
°] x> o Yy—> © Y-
Fig. $10.2-4

Since this is 8 half-wave rectifier, y assumes only positive values. So P(y<0)=0.

Hence, Fy(y) =0 (fory < 0) and P(y < 0*) = % Hence, F,(O*') ==

X is a gaussian r.v. witi mean 4 and oy = 3

Hence,

(@) P(x24)= Q(L;i) =0(0)=05

®) P(x20)= 49—;i)= 1—4:;-) =1-009176 = 0.9083

(© P(x2-2)= g(-‘-z-s-'i) =1-0(2) =1-002275

(a) From the sketch it is obvious that x is not gaussi

1
2

=09773
Fig. S10.2-§

an. However, it is a unilateral (rectified) version of

Gaussian PDF. Hence, we can use the expression of Gaussian r.v. with a multiplier of 2.

For a gaussian r.v.

2
py(») = L_ -+ with oy =4

43‘ 2x

(b) Hence, () P(le)=2P(y>.1)=2Q(i-)=0$026 e B ()

(h) P(1<xsz)=2P(1<ys2)=z[g(%)-g(%)]=o.xsss ol

(¢) If we take a Gaussian random variable y

1
py(y)= YW

and rectify y (all negative of y multipled by -1), the
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resulting variable is the desired random variable x.



10.2-7 The volume V under pyy(x,y) must be unity.

1 A
= =—=] A=2
v 2(lxl)A >
px(x)= Jpxy(x’y)d)'

But y = —x +1and the limits on yare 0 to1-x . Therefore,

. l-x 2(1~x) 0sx<4
Px(x)= Io-x 2dy=2 =
0 0 otherwise

2(1-y) 0sysl

Similarly,  py(y) ={
0 otherwise

Uy Osysi
Pxy (x»}') 2
Pyy ()= =" Fig. $10.2.7
py(y) (1-) otherwise
W-x 0<xsl
Sirmlarly, pylx(yix) =
0 otherwise

Clearly x and y are not independent.

10.2-8 Pxy(x.y)= 2 i 4k u(x)uly)
® pe)= e ™ itey = xe™ i)

2
Similarly, P(y)=ye™” 2y(y)

pr(sly =)= 53‘7—)’1 = xe ufz)

and oy (ol =)= ”j;‘f 2o e ) < yer ()

(b) From results in (8), it is obvious that x and y are independent.

(@ +by?-207) /m

1029 px(¥) = 2 Pxy(x.0)y = ;;:75123 dy

=M P2l 12
e LR Sy

2
Similarly we can show that py(y) = 7-1-=e" fa
2ma

Therefore Py (xly) = Px; (Z‘;;’) J_ a(x--—y

Py (%) p’: (;:)y) \[— ‘(x-—y
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10.2-10 K j: j’j;e'("2 il 2)M = KI:e"z [ j:e‘yz e a)»]dx =1

But I:e”'z""dy = J;e‘zl‘ and, K&j:e'”z“dx = Kﬁ(f—sz)= i

Hence, K = -I-J—B_-
7V4

2 2 ) 3 a2
()= K[ T Ny ke 2 ey K WER

, 3 3,2
Because of symmetry of pyy(x,y) with respect to x andy. py(y)= yyd 3y7ia

Pry(xy) 1 '("2 "”"l:’]

Py (xly) = 0) W

and

82 2
x, = = +xy+y
TSI et

Since pyy (%, ) # Px(%)Py( ¥), x and y are not independent.

10.2-11 P, = P(1)P:(1)+ P(£0)P:(0)
If the optimum threshold isa, then

- 545

e)-o 2222

o 2o 20

d ] A -af 120, {4, +a) 1202 )
'Zf=§37[e—( poe) 204" p (1) 4] A p (0)| =0 Fig. $10.2-11

_ 2 2 _ 2
Hence, e-(A’ ) 129 P(1)=e (4pva) 120 P,(0)

2 TR0
And a= g’.'_[n[_i(_).]
24, | A1)

- 1 (x-2)'n8
10.3-1 X=2, 0x=3, x)= e
x px(x) 3\[2';
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1032 py(x) =-;—|x|e'H

Because of even symmetry of px(x), X=0and ,
%2 .—.2_'“’"::2;1,((1:)47:==2“'°°J:2 L bx(13
0 2
j”’ T =3= -
p L
Fig. $10.3-2

xz—a,2+x2-a =3=6

¢v'net u(y). Therefore
- et 1
y= [~ o=, 5 y8()dy+ I:;:E;ye
g ye?' 7" dy = 03990
v =2y p, () = L,—yzﬂ(y)dy 7 —J—f"z’"’zdy

® 2 —y2/262dy=_0'__

_757] 2

1 1
-y 120* &

o2
0,2 =y -(3) = —5- ~(03995)" = 034085>
2
1034 o,%= j:xsz(x)dx=2'[:x2 TJ—Z_;e-x /3zdx=2x-2—,
2
1 o _m 8 <5 2 2 42(8) 16732
Because X = xe * Ptdx = =0, -(X)" =2—- =
2427 ‘[0 2 x ~(®) 2 (27 n

The area of the triangle must be 1. Hencel(=% and px(x)sg(xﬂ) -15x53

10.3-5
3 1J»4 1y Y o1r6s 16) 5
= é:— - ] ——— S— = | ———— -~
[ mpxlxar = 3 Jrly -0 =41 5= 3 8(3 2) 3
0 %
3
T.1p.2 2
X s-[-lx (x+1)dx 8(4+3)_| - SL"
1[81 27 1 1] 1 ]
B B e
gla 3 4 3] 3 =1 X
s <2 (o2 11 25 8
I B L . Fig. $10.3-§
o' =% - =3-F =3 ¢
12
- 1 2. 3, 4. S, 6
1036 X= %xi&(x.-) - -—(2)+—(3)+-3g(4)+§g(5)+‘3-6'(6)+—(7)+
256

32‘(8)+——(9)+—(10)+—(n)+ —(12)==
X_-= EX,ZP (Xj =‘3?(4)+§—6'(9)+-3—6'(16)+§3(25)+§(36)+33(49)+

i=2

5 4 3 2 1,..

= —_ = = —(144) = 5483
(64)+36(81)+36(100)+36(121)+36( }=548
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—_ 2 —_
10.3-7 x" = —-—35=J':x"e"" 120} g Form odd, the integrand is an odd function of x. Therefore x" =0.
oxv2T

For n even, we find from tables
(OXS){n-1)02  n even

%
"

0 n odd

10.3-8 Letx; be the outcomes of the ith die. Then,
ii=l+2+3+4+5‘>+6=1 i=1,2,..,10
6 2
2
‘;;‘ 12422432 +424+5%46 9
' -6 6
2 35

T =\
oy =xi ~(X =5

Ifx is a RV representing the sum, then
X= il +-X.2+...+iw = l({-;') =35

2 2 2 2 35)_175
ox =05, +0, +.H0L = 10(—) = —

x2=0l+% = 3—2—5-+(35)2 =1254.167

1041 py(x)= %6(::) + -;-5(,: -3)

1 _nl
Pn(")=m¢ /8

y=x+n

o) = la)* o) = 100+ 1= =

e 1 Ay-nPra e 1 sy )| — ~(y-2)218
=3 Lod(x){me }a& +3 L”J(x 3){—7—'2 o e ]dx

2 (v_1)?
1_ -’ 1_ -3
44271

-nl18 Fig. S10.4-1

%)

4

10.4-2 py(x) = 048(x)+065(x ~3)

Pa(n)= 371573'"2"

and
A, 3 _r-ym Fig. 510.4-2

1
py(»)= T T

10.4-3  py(x)=08(x-1)+(1- Q)5(x+1), pa(n)= P&(n-1)+(1- Q)o(n+1)
py(¥)=[8(y-1)+(1-Q8(y + ] *[PEly -1+ (1~ P)s(y+1)]
=(P+Q-2PQ)8(y)+ PQs(y-2)+(1- PY1-0)8(y+2)
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10.4-4 Pa(2) = Px()* py(¥)
Taking Fourier transform of both sides, we have
P,(m)se"%‘”z Pl
Py(w) = Py(@)* Py(w)

2.2
Py(w)=e oo e Jo¥

- e-(ﬂi +0? )mz - ja(%+Y)
Taking inverse Fourier transform we get
1 e—[z—(u-ry)]2 12(o}+0%)
;;2#(0',2( + 0‘3)

Itis clear that Z=X+Yando’ =0% +0,

P(2)=

—3? 2.2 2 : . .
10.5-1 Forany reala, [a(x-%)-(y- 9)] 20, 0r a*ox + oy ~2a0%y 20. Hence, the discriminant of this
quadratic in a must be nonpositive, that is:
c
——xy-‘ <1 or jg<1
G40y

10.5-2 Wheny = K;x+K; Hence, =KX+ K3
a'§ = ko2 and oy = (x-X)(y-¥)=(x-X)(Kix+ Ky - KiX-K)= Kjo2. Hence,

403‘, -40,2‘05 <0, thatis,

c
Pxy = p :Z = K,cri/l(lcri =1 if K; is positive. If K is negative, 0y = K,ai is negative.
%y

Buto, and oy are both positive. Hence, pyy = ~1

1053 X= J':” cos@p(0)db = 2%]:" cos@d@=0 Similarly, y=0

Oy =Xy =cosfsinf = %sinZG = % g”sinzop(ﬁ)d8= :1; g'sinZBdﬂ =0
Hence, oy = Xy=0 and X,y are uncorrelated. But x2 +y2 =1L

Hence, x and y are not independent.

10.6-1 In this case
Ry = Ry = Ryy =m} = Py
Riz = Ry; = Ryy = Ryy = Ry = 08255,
Ry3 = Ry = Rp = 0562F
Rg3 = 03087,
Substituting these values in Eq. (10.86) yields: a; =11025, a; =-02883, a3= -0.0779
From Eq. (10.87), we obtain

2 )= (0825a; +0562a; +0308a3)| Py = 02753F,
m

Hence, the SNR improvement is
10lo I | 5.63dB.
02753P,
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Chapter 11

/

11.1-1

11.1-2

11.1-3

11.1-4

This is clearly a non-stationary process. For example,
amplitudes of all sample functions are zero at same
instants (one is shown with a dotted lin¢). Hence, the
statistics clearly depend on¢.

Ensemble statistics varies with #. This can be seen by
finding

x(t) = Acos(ax +6) = 4 j;oocos(ax +8)p(w)Mw

100
= 1-(')% R cos(ax +6)de . This is a function of £.
Hence, the process is non-stationary.

This is clearly a non-stationary process since its
statistics depend on ¢. For example, at? = 0, the
amplitudes of all sample functions is 5. This is not
the case at other values of 7.

x(t) = acos(ax +6)

x(1) = acos(ax + 6) = acos(ax + ) = cos(ex +6) .[_AA ap,(a)da

= [cos{ax +6)/24] [ ada =0

Ry(t).12) = a2 cos{ax, + 8)cos{ax; +6) = cos{ax, + 6)cos(ax; + o)a—2

2
= cos{ax; +6)cosax; +6) ij -;—jda

2
aﬁs-cos(ax, +8)cos{ax; +6)
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11.1-8

x(t) = acos{ax acos(ax +6) = j 0 cos(ax + 6) p(@) do

a a_ ..
‘_1560 cos(ax+0)dw=msm(ax+0)‘

- l—(‘)—’&[sin(xoo:w)-sino]

Using this result, we obtain

2
R(ty,12) = a* cos(axl +6)cos{ax; +6) = g—cos[a;(t, +1)+ 20] +cosaty -12)

100

0

20«' +1

)[sm[mo(tl +12)+20]-—sm20]+ 200(
1

1116 x(r)=ar+b=ar+b Buta=0 Hence x(f)=b

Also, a=0, 3_2=J

1L1-7 (b) x
(c)

Xr=K=0

(e) The process is
sample function is

not equal to the ensemble mean (x = 0) .

2 p(a)da = -T

2

-2

4
3

-z)

[sm 100(t; - £3 )]

R (Il,lz) (M1+b)(&l2 +b) a ’I’Z +a(11b+lzb)+b

= aztltz +ab(1) +12)+b = %t,t; +b?

= 1
n x*= Ry0=7

11.1-8  x(¢)=acos(@1 +6)

=0

2

1

a‘=-
3

() x{t)=acos(w,! +6)=acos(w.t+6)=0

p(K)
[ K-> |
Y W (3 K,
%2 = 2 Ate2ge =l . 4& —rey
R (t.12) = KK =K j K2 p(K)K j((dx - T —>
(d) The process is W.S.S. Sincex_(tj =0and Ry().12) = l - ° € pore
not ergodic since the time mean of each "
different from that of the other and it is 3
[<] t‘—;
i ,
-— 5 b:
Fig. S11.1-7
°.5. P(‘> R P(.7
27| -
-1 o i ° aw
- T a-y
LN\ N\ -
~NS N >
(© R(r.12)= a? cos(w t; +8)cos{ @1 +6) /\
{cosmc(n -t;)+cos{wc(t, +12)+29]} \/ \/ \/ tj"
1 g2 A
coswc(t, —12)4’—2-;]0‘00{0)‘.(1] —12)+20p3 o~ g 5
7 ~—— -

W3 W= )

cosw (h -12)

(d) The process is Ww.S.S.
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11.2-1

11.2-2

11.2-3

11.24

(e) The process is not ergodic. Time means of each sample function is different and is not equal to the
ensemble mean.

o ;-2—= Rx(°)=%

(a), (d), and (¢) are valid PSDs. Others are not valid PSDs. PSD is always a real, non-negative and even
function of @. Processes in (b), (c), (f), and (g) violate these conditions.
(a) Letx(t)=x, and x(t+7)=x; Then,
(Xl - 4 Xz)z = X|2 +X22 +2X1X2 2 0, X|2 4‘)(22 21 2x1Xx,
But, x;x3 = Ry(r)and x)2 = x72 = R,(0) Hence, R,(O)Z‘Rx(r)|
®) R(r)=x{)x(t+7), lim Ry(r)= lim x(t)x(t +7)
TR F->0

Ast -, x(r)and x(t + ) become independent, so lim Ry(7) = x(t)x(1 + 7) = (XXX) = x?
f=—pO

R.(7)=0 forr= 15% and its Fourier transform S, (@) is bandlimited to B Hz. Hence, Ry(r)isa
waveform bandlimited to B Hz and according to Eq. 6.10b

[
R(r)= X R"(-ZEB-) sinc (228t - n). Since Ry (E"E) =0 for alln exceptn=0.

n=-x®

Ry(£) = Ry (0) sinc (2787) and S, ()= 5*—(°—)mz(

2B
to B Hz.

@

4”3) . Hence, x(1) is a white process bandlimited

Ry(7)= Py x, (1, 1)+ Pyx, (=1=1)= Pax, (-1 1)- Pxix, (1.-)
But because of symmetry of 1 and 0,
lexz ( l) = Px,x; ('1"1) and lex; (-1, l) = lexz(l»‘l)

and R, (r) = 2[1=',‘,,‘2 (1, 1)= Py, (1,-1)] K~ T ﬁ.é
= 23 (O ey (1) Pege 1) e T

= ZPX) (l)[sz[xl (lll) -(l - szlxl (l|l))] - 2Px2|x; (m) -1
Consider the case nTy <|r] <(n+1)T; . In this case, there are at least nnodes and a possibility of (n+1)

nodes Prob[(n+1)nodes]=1:1_£'fk =L
b b

Prob{n nodes) = 1 - Prob{(n+ I)nodes] = (n+1)- =
L .
The event(x, = ljx; = 1) can occur if there are N nodes and no state change at any node or state change at

only 2 nodes or state change at only 4 nodes, etc.
Hence, Py, (1) = Probf(n+ 1)nodes] Prob{state change at even number of nodes) +

Prob(n nodes) Prob(State changes at eveen number of nodes)

The number of ways in which changes at K nodes out of N nodes occur is ( ,’}’ ) Hence,

= {7+ 0 n+l+ e 2 ,,_.|+ ﬂ-n .
Py (1) =[(5°'Y09)°(04)"" + (5706’ (04)" " +.... | (rb J
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[(3)(0.6)°(o.4)" + (g)(o.6)2(0.4)"'2+ ..... ] [n+ 1- %)
and R, (1) =2F, , (§1)-1 This yields
R =1-12d <t (n=0)

= --0.44«#0.24-‘-'i Ty <l <27 (n=1)

.
=0.136-0.048§ 2T, < <35 (n=2)
b
and so on.
4 Ret®)
S N b 3
\/ FY Y . ;Tb
d Rx
2 47T
024
[.—.—'_“ e P
o | S
- sy -0,0 “.
- )3

dz

dat*

[+ 44 Je
0.0576 T i 08576
> *
v v
-0,288 -0.288

e}

Fig. S11.2-4

The PSD can be found by differentiating R, (r) twice. The second derivative d*R, / dr? is a sequence of

impulses as shown in Fig. S1 1.2-4. From the time-differentiation property,
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2
—d"’—z Ry(r) > (jo)? S¢(@) = ~0?5,(@) . Hence, recalling that 5(r ~T) & e /*T, we have
T

-0’ 5y(e) = %[—2-4 +144(e/0B +¢7/0%) - 0288/ + Pl )+]
= —Tl—[—2.4 +288coswT} — 0576 cos2T, +0.1152cos3aT) +..)
b

and

Sy (@)= ;i:z—[ZA - 2.88(cosw7’b -%cosZaﬂj, + -21?cos3aﬂ}, - l—;—s-cos:%aﬂ;, +)]

11.2-§ Because Sp(w) is a white process bandlimited to B, Rpp(7) = Ry (0) sinc (2Bt) and
n
Rm(ﬁ) =0, n=4%1, +2, 3.

This shows that (7 t+—|=R -f—)=0
( )’{ 23) '“(23
Thus, all Nyquist sample are uncorrelated. Now, from Eq. 11.29,

2 «©
Sy(0) = [Pl [Ro +3 Ry cosm»oﬂ,]

Tb n=]
Ry, =23,8;,,=0 n 21 and wherea, is the kzh Nyquist sample.
Ry =2} =x? = Ryy(0). Hence,
2
Plo
S, (@)= [Pl Re(0) = 2BRm(o)|P(w)2| since Ty = —=
/3 2B

11.2-6 For duobinary .
P,k(l)= R, (-1)=025 and F,, (0)=05

— 1 1 i
ay =(l)z+(-l)-4-+({-i)=0
1y 1
=i =07 {0 500(3) 3

Ri=agape =2, O 8k8kstPayag, (ax8x41)
ag Gk
Because a; anda, | each can take 3 values (0, 1, -1), the double sum on the right-hand side of the above
equation has 9 terms out of which only 4 are nonzero. Thus,
Ry = (1)(1)Plglh.l (1’1) + (“l)("l)”n.q.‘ ('1)(‘1) + (l)(-l)Plglkq (‘X‘l) '('l)(l)Plklk,.l ("l)(l)
Because of duobinary rule, the neighboring pulses must have the same polarities. Hence,

P‘k'h—l (l’l) = P‘k (I)Plh,lllk (lll) = .}(-;-) = %

Similarly, Pgay,, (-1-1) =% Hence, R, =‘%

Also Rz =838542
In this case, we have the same four terms as before, buta; and ;. are the pulse strengths separated by one
time slot. Hence, by duobinary rule,

1{1 ]
1) 7 02 e 0= (3 %

i 1
Similarly, By,a,,,(-1=1)= T
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11.2-7

11.2-8

1
In a similar way, we can show that Py, o, , (1=1) = Pasay,y (-1,0)= ﬁ

Hence, Ry =0 g
Using a similar procedure, we can show that R, = 0 for n22. Thus, from Eq. (11.29) and noting that R,is .
2 2 « .
@ Pl 7, p
an even function of n, we obtain Sy (@) = I-P—(T—)LB- (1+cosaT )] = L(?J-t:os2 (22—") .
b b

T; T;
For half-width rectangular pulse P(@) = —?—sinc (%Tl) and S, (w) = -?—sincz(%l) cos’ (%)

8 =(1)@+(-)(1-0)=20-1

Ro =a} =(1°+(-1)*(1-©)=!
Because all digits are independent,

Ry =885, =88, =(20- 1)* Hence,

2 L
Sy (@)= ‘L(;;’l‘—[l +2(20- I)Z(Zcosnwn)]

Approximate impulses by rectangular pulses each of heights and width & such thathe =1and £ = 0
(Fig. S11.2-8a)

Ry(r) =T T xix2 P x, (xix2)
x x X
Since x; and x can take only two values h and 0, there will only be 4 terms in the summation, out of which

only one is nonzero (corresponding to x| = h, x5 =h). Hence,
Rx(f) = hz PX|X2 (h’h) = hz PX] (h)szlxl (hlh)
Since there are @ pulses/second, pulses occupy as fraction of time. Hence,
2
PX] (h) =ac md Rx(’) =h a&Plexl (hih) = ahplex; (h‘h)
Now, consider the range|r| < &. Py, (Hh) is the e
Prob(x; ) = h,given thatx; = h. This meansx; lies on one f‘m ﬂ H ﬂ
of the impulses. Mark off an interval of 7 from the edge of . . 1] LI
this impulse (see fig. S11.2-8b). If x, lies in the hatched +-

interval, x, falls on the same pulse.
Hence,

Py, () = Prob{x, lieinmeha:chedregion)sf_;_’=1-£ €-T — o

and Ry(r) = an(l —f) 2 "‘
Since R,(r) is an even function of r, R (r)= d{ - lg) —

In the limit as £ = 0, R,(r)becomes an impulse of strength . Rx(®) @
R (r)=ad(r) |d=0.

When 7 > &, x; and x; become independent. Hence, > .
Pegin (0) = Py () = 2 ,
R(r)=a*he=a® = |f>0
Hence, R (1) = ad(r)+a? Fig. S11.2-8

o ond




11.2-9

11.2-10

In this case the autocorrelation function at r = 0 remain same as in Prob 11.2-8. But for r > 0 whenever
x(t), x(1 + r) are both nonzero, the product x(r)x(z + 7) is equally likely to be h? and —h%. Hence,

R (r)=0, T=0and Ry(r)= ad(r)

The process in this problem represents the model for the thermal noise in conductors. A typical sample

function of this process is shown in Fig. S11.2-10. The signal x(r) changes abruptly in amplitude at random

instants. The average number of changes or shifts in amplitudes are S per second, and the number of
changes are Poisson-distributed. The amplitude after a shift is independent of the amplitude prior to the

shift. The first-order probability density of the process is p(x:1). Itcanbe shown that this process is
stationary of order 2. Hence, p{x;?) can be expressed as p(x). Wehave

Ry(7) = [ [ x1%2Payny (X1, %2 )00

=" J: x,%2Px, (31)Px, (%2}t = %1 iz (1)
To calculate py, (x2|x1 = x1), we observe that in r seconds (interval between x, and x2), there are two
mutually exclusive possibilities; either there may be no amplitude shift(x, = x; ), or there may be an
amplitude shift (x5 # x;). We can therefore express Py, (%2 = xy)as
Px, (%2lx1 = x1) = Py, (¥2lxy = %1, RO amplitude shift) P(no amplitude shift) +
Px, (2[%) = x1, amplitude shift) P(amplitude shift)

t t+T
| RS
__r_' - '—'L_rj J-l_ t ——
- — T
o *2  Fig, §11.2-10

The number of amplitude shifts are given to have Poisson distribution. The probability of k shifts
in r seconds is given by

k ,
=Gk

where there are on the average shifts per second. The probability of no shifts is obviously po(r) , where

po(r) =P
The probability of amplitude shift=1- po(r)=1-€7P . Hence
Pxy (x2x1 = x)= e P py, (x2]x) = %1, mo amplitude shift) + (l - e'p’) P, (x2lx1 = x1, amplitude shift)
_ ' @
when there is no shift, x, = xyand the probability density of x3 is concentrated at the single value x;.
This is obviously an impulse located atx; = X;. Thus,

Pxy (x2[X1 = %1, no amplitude shift) = 8(x3 —x1) 3
whenever there are one or more shifts involved, in general, x # x;. Moreover, we are given that the
amplitudes before and after a shift are independent. Hence,

Pxy (%2]%1 = 1, amplitude shift) = py, (¥2) = Px) @
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where p,, (x;) is the first-order probability density of the process. This is obviously p(x). Substituting
Egs. (3) and (4) in Eq. (2), we get
Pxy (x2lx1 = x;) = e P o(x; - x) +(1-e’ﬂ r)l’x, (x2)

= P [a(ey - )+ (¢ - )y (52)

Substituting this equation in Eq. (1), we get
R(r) =P [ [" xmmpy, (xl)[J(xz —x;)+(e# -1)py, (xz)}bxdxz

= e’ﬁr[-[:a [7 xizapy, (31)8(x2 = ;)i [ mmle - o (21)Pra (x2 )dx'dxz]

= e-pr[ﬁxlszu ()t + (e =) sy (i) [ 32 (32 )dxz]
®

= e'ﬁ’[x2 + (eﬂ’ - l)iz]
where X and x2 are the mean and the mean-square value of the process. For a thermal noise X =0 and
Eq. (5) becomes
R (r)=x2e#" >0

Since autocorrelation is an even function of 7, we have

R, (r) = x2e~ PP
and

22
Sel@) =
(o)

11.3-1 For any real numbera, (ax - ¥ 20
a®x? +y2 -2ax—y 20
Therefore the discriminant of the quadratic in a must be non-positive. .-Hence,
—2 33 =2 .33
(ny) <4x? -y2 or (xy) <x? y2

Now, identify x with x(r;) and y with y{r,) , and the result follows.

11.3-2 Ry(7) = uryu(r + 7) = [x(t) + y()[x(t + 7) + ¥{1 + 7))
= Ry (7)+ Ry(t)+ Ry (7) + Ryx(7) = Ry(7)+ Ry(7)
since x(¢) and y(r) are independent. ,
Ry(r) = [2x() + 3y())[2x(r + 7) + 3y(e + 7))
= 4R, () +9Ry(7) since  Rey(r) = Ryx(r) =0
Ry (7) = [x(1) + () [2x(¢ + 7) + 3y(e + 7)) =2Ry(£) + 3Ry (7)

Ryy(7) = Ryy(-7) =2Ry(7)+ 3Ry(7)

113-3  Ryy(r)= ABcos(wgt +¢) cogna(r +7)+ ng)

= -';—B{co{mot +nwg(t+1)+(n+ l)¢] + cos[nmo(t +1)-og+(n- 1)¢]}




I

11.3-4

11.4-1

co{a)or +nwg(t+7)+(n+ l)¢] = -il-’;j:' cos{mo: +naxg(t +’¢') +(n+ l)¢]d¢ =0

Similarly, cof nwo(t + ) - @ot +(n - 1)¢]=0 and Ryy(r)=0

x(1) = C, + 3. Cy cosna(t = b)+6,

n=|

©
=C,+ ZC,,(nwot -nagb+ 0,,)
n=l

Since b is a r.v. uniformly distributed in the range(0,7,), @ob = -2;,’52 is a r.v. uniformly distributed in the
b

range (0, 27).
Using the argument in problem 1 1.3-3, we observe that all harmonics are incoherent. Hence the
autocorrelation function of R, () is the sum of autocorreiation function of each term. Hence follows the

result.

(@) S;(w)=2KTR, and Sy(w) =2KTR,
Since the two sources are incoherent, the principle of superposition applies to the PSD.
IfS,, (@) and So, () are the PSD’s at the output terminals due to S; (@) and Sy(w) respectively, then

50, (@) =|Hi(@) $i(®) and S,() =|Hz (o) S2(0)

Ry !/ jaoC L)
Ry +1/ joC JoRyC+1 Ry _ Ry
R+ Rz /;mC R+ Ry Rl(ja)R2C+ 1)+ Ry ij1R2C+ R+ Ry
Ry +1/jaC ' jaR,C+1

© > ’ -—0
, hg R R
<
R Rg C Vo c v, 1T
(b)

(a)

oY

(c)

Similarly, Fig. S11.4-1
R R
H. = ] =
2(0)) Rz(ja)R|C+l)+Rl JOR R C+Ry + Ry
_ 2KTR R} 2KTR R}
So(@) = 2222 7 md Sp(@)=——73 2
o Ky 13 +(Rl+R2) @ R‘ ch +(Rl+R2)
Svo(m)=sq(“’)+soz(w)= 22 2l 2 2 .&-R-a'-
o RI ch +(R1+R2) . R, Ry c
1/ joC R +R, = VY
(b) Hw)= = AKTR
(@)= =" "R~ jaCRiR; +(Ri + Ry) 2KTRR
jaC Ry +Ry Ri+Ro ——b
S, =|H(w)z|2K7RlR2
R1+R2
(R +R2)2 '2KTR|R2 _ 2KTR1R2(RI +R2)

DICRIRE +(R+ Ry RitRe o RIREC+(Ry+ R,)?
which is the same as that found in part (a).
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1142 y(r)=[_ Ha)(t-a)a
Ryy () =x(t)y(r+7)= "(’)I:, Ka)x(t + - a)da
= J: h(a)x(t)x(t + 7 - apa = I: Wa)Ry (7 - a)da = h(z)* Ry(r) and Sxy(@) = H(@)Sx(w)

1

. jaC 1
In Fig. 11.13, H(@)= = -
(@) R+ .1 JwRC+1
joC

and Sy, (@) = 2KTR/(j@RC +1)and Ry (7) = 2KTR e*/RCy(7)

11.4-3 (a) We have found R, () of impulse noise in Prob. 11.2-8
R,(7)=ad(7)+ a?,and Sy(w)=a +27a8(w)
Hence,
Sy(w) = |H(m)| [a + Zzazé(w)] = ZItazlﬂ(O)l &(w)+ alH(a))I

and Ry(r) = F7[5,(0)] = a*|H(O) +ah(r)*h(-1)

®) A1) =L.e"""uls). H(w)=2. -

jo+—
T

2

: 2
|H( w)l 5, and Ry(r) = aq® +aF” [14.:272]’ a’q? +g;ir— W

H?HT TM x| mm__gr_)_/“’\/\/\‘\_/\'

h(r) { —

Fig. S11.4-3

11.5-1  n(t) = ne(r)cosw,t +ns(t)sinw, !
The PSD of n(t) and ny(t) are identical. They are shown in Fig. S11.5-1. Also, n! is the area under

Sa(@) ,andisgivenbyn’-z[iz“-x1o‘+‘g (‘;’ ;)] 125x 10 S

n%(or n}) is the area under Sy, (@), and is given by ng =nl= 2[5000JU + %% x 5000] =125x10° N

L3

q\’-
N

Sk Sk Fe i3d>

Fig. S11.5-1
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11.5-2 We follow a procedure similar to that of the solution of Prob.
11.5-1 except that the center frequencies are different. For the

3 center frequencies Sy, (m)[or Sp, (@) ]are shown in Fig.
S11.5-2. In all the three cases, the area under Sp,_ (@) is the
same, viz., 125x 10*N. Thus in all 3 cases

n? =nZ =125x10* W

N~ JuN- N
XK ! .
z N l ' '£
~0K | 8k 1o -k ' SoR ek sk | bR Iom BK
fHy > £y - £y =

Center {veq . 105 k. ceritey freq- 95 R Center freq- go K

Fig. S11.5-2

1153 () =n2(r)=n(r)= 2[% %1073 x 100 x 103] =100

B 5.

o
— 70-3""3- ) ; - Fig. S11.5-3
_6
» Sm(w) = 2+Q2 - 6 = !
154 @ Hoplo)= 50050 L6 602+60 @l+10
9+
1 -
®) hap(’)=m'e Jﬁlll

(¢) The time constant is 7:-6 . Hence, a reasonable value of time-delay required to make this filter

realizable is 7::? = 0.949 sec.

(d) Noise power at the output of the filter is

| (o Sp(@)Sp(@) 1 6 6 aq @ |®_ 3
N, =— —m\ N ) do = — do= tan =
°"2x I—«» So(@)+Sa(@) 25 =o?+10 27410 J10 | 10
The signal power at the output and the input are identical

1 o 6
ngs"‘-i_;j-c;-;;idm:l
So J10
SNR = — = —— = 1.054
N, 3

[
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4

_ Sm(a’) __.__a_’z_‘-"—4——-
1155 @) Hop (@)= 504 5p(@)  _4_, 32

0?+4 0%+64
o? +64 1{ 53.33]
=l

9% +96 “9| " w?+1067
1 -3266)|
(®) hepl) = 5 ) +8163¢

(¢) The time constant of the filter is 0.306 sec.
A reasonable value of time-delay required to make this filter realizable is 3 x 0.306 = 0.918 sec.

(d) Noise power at the output of the filter is

1 Sm(®)Sn(@) I 32

o
0= Zx o Sp(@)+ 50(@) ?l’;j“‘ 9(w? +1067) do =038
The signal power is
S,-=S,,=El; ::‘-;dwﬂ hop(1)
%90- - 6§l4—4 - 1838 . S
Fig. S11.5-5
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Chapter 12

S S; -8 a
- —L:: =——'— - = B e .
12.1-1 N, r=25 N=2xSp(@)=2x10"", B=o 4000 Hz
=1000 = =S, =008
’ 2x 10'“x4ooo !
Also, H (@)=10"3. Hence, Sy = Si___gx10*
|H()’
--—p[zxaooo;r]=sxlo‘=p=1o
12.12 l Sen(3 niLd -3
-3 : 10 m () +n (£
M e e e SR8 10 m )+, (L)
- WY s = —
« % > JO+ed e
Fig. S12.1-2

s,.°<w>=sn<w>|ﬂd(w>|’=1o-'°[”—’if‘iz—] a < 3000%

p;
2 2 ~10 a
N, =-1—I 10710 9—%?— w = 102 +a2(u -12-x10
n a a‘“n 3 0 3
315dB=3162 =2 = So o5, =337x107
No 32407

1072
But s,(f) = —a——m(t). Hence,

S, =19-m2(z) 337x1073 = m? (1) = 2157 x10°
a
me = Be - 9
Also, m =5-;L°,Bdm= — = 80008 215710
Hence, = 2696 x 10° and Spp(o) = 2696 x 10° rect(%)

1 fa 2 1 (a o[ 10°
S =— Iy Sml@)|Hc(0) do=— [ 2696x10 (mz e }m

=26.96 m-;g 2696 =268x10~4
arn alo T4a

1 ¢ 1¢e 6, 2696x10°a 9
Sr -.-;jo Sm(0)do=— J 2696x10 do = =———— = 6865x10

S, S, S;
12.2-1 (a) 30dB=1000=—%= =—L = =S, =4x1074
@ N, T =B 1070 x 4000

[

(b) From Eq. (12.7), N, = B = 10-19(4000) = 4 x 107
© S =|He(w) Sy and 107857 =4x107" = Sp = 4x 104
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=5 =4x107*

S - S;
12.2-2 20 -1000=—i-= ]
® N, MB 10710 x 4000

() N, =NB=10"19x8000=14x 10”7
© S; =|Ho(@) S7 = 10857 =4x10™ = 57 = 4 104

12.2-3 Let the signals m;() and my(7) be transmitted over the same band by carriers of the same
frequency (@, ), but in phase quadrature. The two transmitted signals are Jf[m;(t)coswct +m,(7)sin wct]

Vatos we_t V2 s D, t

m, (E)+n-(t
LPF-—"—&-' )

mgl£) + 0 (D

LPF

Va sined, t V2sinat

Fig. S12.2-3

The bandpass noise over the channel is n (t)cosw t + ny(r)sinwr. Hence, the received signal is
[fml (O)+ nc(t)]coswct +[J—m2(t) + n,(t)]sm ot

Eliminating the high frequency terms, we get the output of the upper lowpass filter as my(f)+ T n.(r)
Similarly, the output of the lower demodulator ism; (n)+ 7]-_; ng(7)

o

These are similar to the outputs obtained for DSB-SC on page 535. Hence, we have -1%9- = y for both QAM

channels.

1224 @) p=i"-'(ilm=ff- Hence, m,, = s

) 2 2 m2
(b) —S—o-s——-——'-rs—in 'y = 2# 27 Whel’exz=—p‘
No A+m? mp2 -3 K" +u m
+m
)
u
2
m
© For tone modulationx? = —&-=2 undforp=l,—s—9——-!—7=r
m 2 N, 2+1° 3
p
2, 2 m2+;n_i m,?
@ RatioSL = A2 . =P =2E slex  ifx?>>1
St m? m? m

96



5, .2 my _(30)’
12.2-5 (a) From Prob. 1224, —2- = 5 7. For3c-loading, m , =30 pandx? = —5 = "—3—=9
N, x? + U m? Om
S 1 7
and when y=1, - = —y =
whenp=L L =907 "10
(0s)*

(b) When =05, Se . 22
o 9+(05) 36

12.2-6 For tone modulation, letm(f) = u4 cos@,t . For BSB-SC,
¢ nsa(f) = V2phcosw ut -cos !

= %[ws(a’c + @)t +cos{w, - mm)’]

2,2 2 2
_HAT H AT A
S; = 2 +e =3 and m, = T T—J-;M Hence, the peak power
= 2 0,242 So _, .5 _ Sp =
Sp—(ﬁlb‘) =2u"A%and 'ATO'—7= —2—— where §; -—Sp

For SSB-SC
ssa(f) = m(t) cost + my()sin@f
= pACOS Wt COS@ I + UASIN Dyt SIN Dt = pAcos(w, - W m )t
g4 S S _#4_ Se_

s,..-._?A—a.nd m, = pA. Hence, Spsy and—-°—=r-—--———-
o

For AM
¢ u (1) = A1+ pcoswpt)cosat
2 2 2 24
S,-=-A—+m_=i_+ﬂ 4
2 2 2 2
= A(1+u)and Sp = A2(1+p)2.
Hence,
2 -y 2
sfeen) s, @ s () Sbs)
4(1+p)? No A4m? A2+(p2,42/2)w8 \2+4% ) 401+ p)’ B
S, Sp
Under best condition, ie., fory=1, —%=
,  10AB

Hence, for a given peak power (given Sp) DSB-SC has 6dB superiority, and SSB-SC has 9dB superiority
over AM. These results are derived for tone modulation and for 4 = 1(the case most favorable for AM).

12.2-7 For4o loading, m, = 40, and the carrier amplitude A = mp = 40y, (for u=1). For Gaussian m(z),

m? = o2, (assuming i =0)

Prob(E 2 A) = j" By 5,210 gp_ = 41200 =001
2 2 2,2 2 .
Hence, -14——=86—'“=4,605md s,.=“ +m =15_°_m:.£2m.=_11.,3n
202 o? 2 2
s, 11 o 174k 17
Therefore, P B A | R = —(4.605) = 9.79dB
PTeesh S8 2 B s(uua) 3 (4609
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12.3-1 %’— ~28dB = 631. Hence,

o

S, m()
S0 _631=3
A py =

(3 m)

Therefore, ¥ = -6-3-1'-2"—3 = 47325

(a) Also,y = -5; = §; = y AB = 47325x2 % 10710 x 15000 = 14197 x107

Aa) kfmp :2=kf(30'm)
278 2xB 30,000r

S, —azk/mz(t) azkjam—(w"‘) (20,0007)* =4n

M B= =k fOm = 20,0007

S
N, =22 200199
© No=g

123-2 mp = B, m;, = ﬁ and bandwidth = -3— Hence,
T, T,

(So/No)pM (2”"3/7') Bz _3_752_
(So/No)FM 3(48/7') 4

12.3-3  m(t) = cos 3wotandmy =1
. 2 N 2 )
) = 3w, cos’ @, tsinw,t and #(t) = =3w,|@, cos @ ot COSW ot =20, COSW 1 SIN” Wo!
For a maximum

()= 0. This yields cos? @t = 2sin? wgt

orl-—sinzw :=2sin2cot==»sinwt=l cosmt:Jz
0 ) ") 7;’ 0 3

and
my = ‘-30)0 cos? @t sinmot‘ = 30), ?-I%-) = 72-=w,,
(SolNopy Gl S0 o
2 =
(So /NO)FM 3m}, 3(%‘”02
1234  m(t) = a)cosw ! +ay COsl, mp =ay +ay
1) = ~(ay@ sinwyt + @303 sin wst), mp, = a0y +a203

2 2
(so/Na)pM - (27B) ’": - a’%(al +ay)
(So/No)FM 3M'p2 3(010); +aza)2)2

m2a2 (1 + —L)

2
3w§az(l+_n_t)
)
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) (1+2)?
K1+ x)

12.3-8 Error in this problem. There should be 472 in the denominator (see below).

12.3-6

12.3-7

S,4(®) = @*Sp(w). Hence,

2 e ot = [ swom e = [, 4”2f25m(274)df W2

From Eq. (12.42a)

— _ /S _ 1 [ o)

R Tsaa ) A% [ ()

These results are true for a waveformmf{z) -

2

/ 2
¥ e
Bz,j:n(f/fo)”‘ IR Mo

m 1 o
o 1| —ard

3

S

)

~

”

5
N
Sm
L]
~—rt

5. m.
- - B
W N!N

b

~——’

[
~

s
n
k
2 sm(zk)

The definite integrals are found from integral tables.

Ask — ,;3—2-= -
sk, Bn™ =Jo Giiaz2k) ~ °° (3n/2k) 3

(w) ‘(0‘ e ? 21202 , m _zr" 2 Lo 21202 do=2
O’

Hence, the normalized PSD’s is 3‘2‘2—(" 1o’
o

— — 3 2 .
If W =278, then W? = (21B)" =2[ -2“-’—2c‘°' 126 4oy =202 1f p(W)is the power within the
o .
band-W to W.
pW) =2 j;" _g_e-mz/z¢2 o = 2[1 _ Wi ]
pleo)=2,and =—= ”( ) W20t L0995 W =3030, B=04820

A=)
W) _ 095 W=2450, B=03950
)

AW)
)
w2

x=099 =5 =3060% > W2 = PM superior

=09= W=2l150, B=03420
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w2

x =095 —3—=200¢7 = W2 = PM and FM equal
W2 <2
x=09 =5 = 1540% < W? = FM superior

12.3-8 m{t) = a, coswyt +a; coswyt, and
2 2
Sal1) = S8l - R+ 8L + R+ {8 - f)+ U7 + )]
x-n—2-=rsm(f)df=(a|2+a§)l2
2
2-(I" = r2sal )= = 2 [ s +£zlL} _adsiradst

2 2 aj +a2

3(01 fl +02fz)

Since B = f5,PM is superior to FM if fz 3 )
1 +a
2
hat is. if /4 a)’ (fl/fz) 1 orifiexty? < 12X
(a/ay)’ +1 3 3

"5
1239 (a) -]—v--3ﬁzr——=—ﬁ27 Since m, =30, m? =a?and234 dB=2188, 2188=-ﬂ27=—(2)
o Mp

218:"3 1641, AlSO, 7 Taresh = 20(8+1)

So Brhresh -L:%l-l- 721

y.—.

So . %ﬂzr - —(721)2(164.1) _2844=3453dB (40 dB =10,000)

N,
S, 1, _1 77-,,-20) 12x10’
b) 2=~ = 10,000 o -20)" = = y=2425
) 3 387 = 3( T R r (v m -20)° y
Required increase in 7=-2%‘2z’5-=1479 17dB
1 1
12.3-10 From Eq. (12.40) ﬂ = —| ————
3 l+( z/mg)
(1) Tone modulation ,82=l( ! ):ﬂ—047
3\1+05 )
(2) Gaussian with 30— loading £ Y 1 1 g=o0s47
; 3l1+1/9
(3) Gaussian with 4 — loading p’=l 1__|=p=0s6
3\ 1+1/16
m?
where  For tone modulation, —2—=05
mp .
-n? o? 1
For Gaussian modulation with 3o - loading, —5 =——5 =&
m, (3a)° 9
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-nTi o? 1
For Gaussian modulation with 4o - loading, —5-=—3 =72
m, (40)° 16
12.3-11 Let us first analyze the L+R channel. In this case, the demodulator output signal, when passed through the

2
°t’4“; [see Eq. (12.33))

0-15 kHz (lowpass) filter, is given by (L + R)' +n,(f), whereS, (o) =

When this signal is passed through the de-emphasis filter Hy(w) = jwa:»la) , the signal is restored to (L+R)
1

and the output noise power N, is given by
2.2 2
Ny=—| |H, S = —do = W-wytan " —
? ﬂj°‘ (o) Sy, (0)de ™ o+l O [ : @)

Let us now consider the (L-R) channel.
Letw, =27 x 38,000 and @, =27 x2100.
The received signal is FM demodulated (Fig. 5.19¢). The PSD of the noise at the output of the FM

demodulator is Sp,_(@) = Naw? / A* [see Eq. (12.33)] The output of the FM demodulator is separated

into(L + R)' over 0-15 kHz and (L - R)' cosw,t over the band 38+ 15 or 23 kHz to 53 kHz. Let us consider
the signal over this passband, where the noise can be expressed as nc(f)cosw t +ng(r)sinw,t. The signal

is(L- R) cosw,t. Hence, the received signal is [(L -R) + nc(t)]cosmc +ng(t)sin@ r. This signal is

multiplied by 2 cose .t and then lowpass-filtered to yield the output(L - R) +n¢(t). But
N 2 2
S, (0) = So(0 )+ Sp(0-00) = (0400 +(0-0:) ]

@)

- ,the signal is restored to (L-R) and
Jo + @y

When this signal is passed through de-emphasis filter Hy(w)=

the output noise power N is given by

2
W3 =L |Ha0) 5o, ()0 = 25 [ (s 00’ +(0- 00 |7

dw

0? +ot

2 2 _ o2
ofly, oo an' | w=27x15000
4 o) )

Hence, the (L-R) channel is noisier than (L+R) channel by factor-ll:,-,-?- given by
o

LA R palit S gyt B

Ny _ d @) h N
% e (7] )

W-o tan” | — B-fitan™ | —
: o} : h

Substituting B = 15,000, f, = 38,000, /; = 2100 in this equation yields:

-l-;,-q'- =166.16=222 dB.

]
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12.4-1

12.4-2

12.4-3

L=M"=n=logylL

Se

2o o312

No

m’ (1)

2
mp

= 3»42"(----'“2 ]
3
Mp

Se .

o

55 dB = 316200

For uniform distribution

m2=

2
(a) 316200 = 3(2)2"[-‘1‘-2—]
m

d m*dm
2mp —mp

Elid

P

_ 3(2)2n(_;_) pYL

2n=18.27

Since n must be an integer, choose n = 10 and L=1024

() -SNL =3(2)% % = 1048576 x 10° = 60.7 dB.

o

Bpcpy =2nB =90 MHz (assuming bipolar signaling)

(c) To increase the SNR by 6 dB, increase n byl, thatisn=11.

22 x45=99 MHz.

S =2BnE,, E,=2x10", B=4000, n=3

S; =2x4000x8x2x107° =128

Si

B,, = nB = 88000 = 64 kHz (assuming bipolar line code)

@ 2=

N., (’“)gm[_}

128

=256%10?

B 2x625x10"7 x4000

Q(J%) = V32 = 1569 x107°

2E -5
WhereJZ=1’ L = 2x2x10 ==
n N 2x625x107

So Eg-= 3(2
"N, 1+4(2‘°-1)Q(J§5)

(-;—) =21845=434dB.

L XOIN
amp
- MP o mP M',‘z“
Fig. S12.4-2

Then the new bandwidth of transmission is

(b) If power is reduced by 10 dB, theny =256, o(v32 )= ©(179) = 00367 and

So _
No

3(2)16

1+4(2“’ - 1)Q(J3_2')

G

)s 227=356dB.
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The table below gives SNR for various values of n under the reduced power.
d)

" ) 3 3 —5 3
SolNo | 722dB [ 117006 | 10.97dB | 8.36dB | 6.35dB

Hence, n = 3 yields the optimum SNR. The bandwidth in this case is B,, = 3x 8000 =24 kHz.

12.4-4 1~ Pz = P (correct detection over all K links) + smaller order terms
=(1- R)¥ (- R) =[1- (k- DR]1- R]=1- R - (K-DF,
So Pg = P +(K-1)P,
(b) y=25dB=3162, y=23dB=1995

P, = O({3162/8) = 0(6287) = 16 10710
P = O{/199.5/8) = 0(4.994) = 3 1077

Pp =99x16x107104+3x1077 =316x107 = P

12.4-5 Fn-lsj:mpm(m)dm-j‘mldm=-§
— 2
o _4
m? =j_@m2pm(m)dm I_Am —d 5
a'f,,=m2-(m) =-3—
5, o m/my’
No [n(e)f (@m/mp2y+@ml/ wmp)+ 1/ u®)
2
2 om
8
) il 6383 "y
= 7 3 = )
(in 256) n, 4,1 ——L;-+00068—m+153x10

12.5-1 As noted on Pg. (570), the optimum filters for DSB-SC and SSB-SC can be obtained from Egs. (12.83a)

and (12.83b), provided we substitute %[Sm(w +o.)+Sp(w-o, )] for S,(e) in these equations. Let

$n(@) = 2[Sm(@+ @)+ Sm(@- )]

1 a? a?
"2 (¢p+a;‘.)2 +a? * (a.v-m,_.)2 +a?
az(a)2 +o? +a2) a=30007 a
(mz +m§ +a2) —4a)2m2 oc=2xx10°
We shall also require the power of Sm(®)-
I= —r Sm(@)do
We can simplify the evaluation of this mtegral by recognizing that the power of the modulated signal
m(z) cos ¢ is half the power of m(z). Hence,
12557 Salodo =5 mdm-;;mn"i’—:=% @

We shall use the PDE system shown in Fig. 12.19
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12.5-2

12.5-3

(a) For this system

‘ H, (m)r STan(‘”)/ Sm(®) 3)
o )

He(@) |
Because H.(o) and Sp(@) are constants, we have
1, f - sﬁll/sm(m _ 103/ {Snl®)
P
[2 \Sml@)dr j;’Js (0)do
where $. (@) is found in Eq. (1). Also from Eq. (12. 83b)
lH ( )|2 Gz IQ Sm(m)df 10 J Sm(w)dw
d\@
ST \/—/Sm(‘”) 10° z/ﬁ(w)
(b) The output signal is Gm(r) . Hence, S, = G? 2(t)
We have already found the power of m(t) to be 2(a/4) = 2. Hence
G _ (10‘2) (30007) 35
2 2 T 20
To find the output noise power N, we observe that the noise signal with PSD S,,(@) =2 1079 passes

through the dc-emphasis filter Hy (@) in Eq. (4) above. Hence, §,() the noise PSD at the output of
H d(a)) is

@

So =

2x 10"6{: Sp(@)dw

Sa( =San(w2= =
w) = Sp(@)|Ha(o) @

o2 > T © ~
Also, the output noise power is nc(r)/v2 and N, = 259- [see Eq. (12.6b)}, where nZ=n’= %j’o Sp(@)dw
S, __ w20 3

i—ff,(m)dw le: §,(@)do

and

Similar to Prob. 12.5-1
B’m?
The improvement ratio in FMis , where

15 fJ—n-(74f]
m —2]0 Sp(@)df = jopayszap and f, % ¢ JSml@) =], fJ‘df_J‘f f_

Hence, the improvement ratio is




Chapter 13

13.1-1
) aufFUf 94"“0(
pLe) p (&) output of 2 bt £i1%r matehed
A wbut ATt °A #a zaD AT] ¢ ¥o PLt)
S| ey
Tb + > 'TL t- T 27, t-*>
Fig. $13.1-1

For the integrate and dump filter (1&D), the output is the integral of plt). Hence, att = Ty, po(Ty) = ATp.
If we apply &(r) at the input of this filter, the output h(t) = ult) -t - T3) -
Hence,

H(w) = Tysinc (-w—zr-'t)e'j"m 2
and '

Ve Mg 2 QE_},
= [ 27
nZ(r) 2”‘[:0 > Th sine ( o
L3R L PR
3 ”j':osmc (x)ax 3
and
2 22
2o p) AT 2
i) B2 A
This is exactly the value of p2 for the matched filter.
13.1-2 The output p,(r)of this R-C filter is
p,(l)=A(l—e"/RC) 0<1s7, /’\\\___
-T,/RC\,~{(t-TB)/RC L *
=A(l-e b/R )e'(' ) >, ~ 1 1 =2Tb t

The maximum value of p,(¢) is 4, which occurs at 7

Ap = Po(T) = A(l"e
1 N do N

“B/XC)

02=—~-—- =
nT o 29®14+02R2C? 4RC
and
) 2 L/RC
p=fL=4ARc(l e )
a2 N
2
1,/RC
_ 44T, (1-e7%/%C)
N T,/RC
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We now maximize p* with respect to RC. Letting x = T,/RC, we have

2
2 1-¢7*
pz___4A 7},_( € )

N x
and
2
2 2xe”*(1-e7*)-(1-e7*)
dap” _ ( ) ( ) =0
dx x2
This gives
2xe F =1-¢7* or 1+2x=¢€*
and
1 126
x=126 o —_————
' RC T
Hence,
2
Poax = (0316)2—'45,&

Observe that for the matched filter,

; 2 __2_ T _ 2 __Ep+Eq-2qu
1321 fiu = u\!IO [P()-q(r)] dt = 2
The energy of p(r) is T times the power of p().
Hence,
A-m?) 22 27
E, = T; =L b=-E
Py T BT BTy TR
2
Similarly, E, = "—ZT!- = E
Ep = OT"p(t)q(t)dt = jg;’ [-Az(l —mz)szos2 ot + A2m? sin? wct] dt
2
= —-AE-T;, +Am*T,
Hence,
442T3(1-m?) 8E,(1-m?)
R
and

13.2-2 Let C, be the cost of error when 1 is transmitted, and Co be the cost of error when 0 is transmitted. Let the
optimum threshold be a,, in Fig. $13.2-2. Then:

Ap- 0
C1=C|oP(€|m")"CloQ( pa 2 )

A, +a
Co=Co1P(€|m=°)=ColQ( pa °]
n
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13.2-3

The average cost of an error is
C=P,(1) G + Py(0) Gy (1)

If Py (1) = Pry(0) = 05
1 1 A, -a A, +a
C=3(C +Cp) = 'Z'[CIOQ( Pa,, : )+C019(—£;;—°)]

For optimum threshold dC/day = 0. Hence, to compute dC/dagy , we

observe that p(l‘\O) P el 1)
olx) = 1_7;71;,,-y2/zdy / é S~

- A? Xy AP Y-

and
dQ 1 -x2/2
—_==- e Fig. S13.2-2
dx JZIK ‘e
Hence,
[ 2 2
_(4p-20) (4p+40)
dC 1 202 . 202
—_— Cipe n -Cge n =0
da, —Tzan o |10 01
Hence, )
(4p+ao) _ (Ap-3,)’
Cu_,l 202 207
Cio
and
2
n (91)“ and g, =20 in [gm_]
Cio o? 24, |G
But
NE
ch=—> wd 4=
Hence,
N C
=—In =01
9o =% [c,o]

We follow the procedure in the solution of Prob. 13.2-2. The only difference is Py(1) and Py, (0) are not

0.5. Hence,
C = Py(1) C; + Pm(0) Co = Pm(1) Cro Q(Apa'ao)+ P (0) Co Q(Ap;ao)

and
_("P"'v)2 _(‘p*"olz
Lo Pu(1) Cio e 23 -Pm(0) Cor e 22 -0
da, 20',,327:
Hence,
In [Pm(o) Con]= 2a04p ay = o [Pm(o) Co:}
Pa(1) Cro ol 24, | Pu(1) Ci0
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i

t%‘&

But
MNE
2 _Nep -
On = andAP E,

Hence,
[P m(o) COI ]
Pu(1) Cio

125 P(ﬂ"%) P(l"lm l)

Fig. S13.5-1

'(’*Ep) / 2"nW

plrim-) = m

2
e /20k [ g2

] e’("Ep)z/z"zn
an‘/ﬂ J

The thresholds are+ £, /2 and

P(elmo) =2 ”/2 O[J—J
P(elm)= P(e|m_,) = Q[ ,,/2 Q(\/;E‘:,_J

sl 4]
-3}

13.5-2 Here, p(t)andg(r) are identified with 3p(¢) and p(1), respegively. Hence,
H(@) = [3P(-0)- P{-a)fe7*B = 2P(-0)e" /o

He) = 2p(7; 1)
1 ]
a,= E[E,,, ~Ep|= 3[95, -E,]=4E,
But multiplication of 4{t) by a constant does not affect the performance. Hence we shall choose /{r) to be
p(Ty ~ 1) rather than2p(T; ~1). This will also halve the threshold toa, =2E,,. This is shown in Fig.

and

S13.5-2. Also,

Epg = jor” [3p(0)]pl(e)at =3,
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and

o= JE,+E,-2£N ) Jﬁspwp—wp: !:15_,,_
¢ N N N

9E, +E
The energy/bit is Ep = —-ﬁi——ﬂ =5Ep Hence,

_ ’OBE,,
Pe Jl- —
13.8-3 ForM=2, WN= 2x10

For 256,000 bps the baseband transmission requires a minimum bandwidth 128 kHz. But amplitude
modulation doubles the bandwidth.
Hence

By =256kHz

107 = Quﬁ:i)z Ey=27x10"
N

S; = EyRy = 2.7x1077 x 256,000 = 0.069¥

For M =16 :
By = 256,000
‘ng 16

2(15 ’ E
Pem = Pploga 16 =4x 1077 = ) Z:Eb )

This yields Ej = 543x 107
S, = EyRy = 543 %107 x 256,000 = 139%

=64 kHz

For M =32
256,000

logz 32

P,y = Pylogy 32=5x10"" = 2(3‘) "13025” )

This yields Ej =1719x 107
S, = EyRy = 1719 x107° x 256,000 = 44W

Br= = 512kHz

1354 For M =2andN=2x10"8

This case is identical to MASK for M=2

107 = Q("zih)=> Ey=27x107"

S; = EyRy =2.7x107 x 256,000 = 0.069%

By = B8 i
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ForM =16
P =(log216)P, = 4P, =4x107

2
4x107 =2 "Mﬁ = E, =167x1078
2560

S; = EyRy =167 x107° x 256,000 = 04275W

In MPSK, the minimum bandwidth is equal to the number of M-ary pulses/second.

Hence,
256,000 _ ivH
log; 16

For M =32
Py =(logy 32)P, =5 1077

22%(SE,
5x10'752Q[ %ﬁl}ssﬁszuw“

S; = EyRy =524 x 1078 x 256,000 = 134W

256,000 _ $12kHz
logs 32

Br=
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Chapter 14

”

14.1-1 The following signals represent 2 sets of 5 mutually orthogonal signals.

‘ S
= | |
& L. L.
2 2T 4
K J_-T-: sin2! ¢
VG > N
_2; t \/
' \I—i— ces all ¢
2 i T
Vi 1 .- ~_
’ oﬁ;—_ sindt ¢
L b
e T /\ °
ey VARV
] J:'?.:t'ts ‘gt
——- - b 1
W Owi1 Tle- NIANYA N
LT \J vV
Fig. S14.1-1
14.122
L 2
=, &
* 2 1
’ o -— o——
T, 21‘; t \rT';
9 3-.rn
i I T, s € =
(4 2‘;‘.“; [
] -
U’T’, d_.{.
21, T
T,
—\'fé aL ..L.__-—-F—— 3T ¢ -
T ;.\FF B “

Fig.S14.1-2
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1413 1) (1,1,0)is —‘/-%._w[lﬁ-ﬁsinwot] a)0=-2;7£
0 0

E'(\,.A

Tc

] 1 z
2) 2,1, 1)is T[Z-ﬁsinwouﬁcoswot] =-——[2+2cos(a)ot+-—)]
To VB 4

l .

(—%, -, 1) is 7]1_=[—-;-— 2sina)ot+\6cosmot]=—J}T;[—-;-+2co{wot+%)]

4) 0

2/
L #\ ya

-4AT, —\/ T

Fig. S14.1-3
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»)  $t) £,
14.1-4 4 1 -3
LA w (s, 1,-4,4,2)
2 3 "'-
4 -
Ll e % v e L S L
rTa r
-1,2,3,1,4) %
J)k) 4;&)

v*f A
at At

T s 't 4% e e 3% "% % B *”
-24 -2
e N (-2,4,2,2,5)
(3-2,3,4,1)
Fig. S14.1-4
b) The energy of each signal is:
E‘=]+4+9+1+16T0=31 : Ez=4+1+16+16+47.0=4l
To 0

E, = 9+4+9+16+172]=39 E, =4+l6+4+4-+-0n)=28

To Ty
¢) Fy-Fy=(-6-8+6+8+0)=0. Hence, £3(¢) and f4(r) are orthogonal.

142-1 Let x(t)=x; x(1+1)=x; x(1+2)=x;
We wish to determine
Pxyxaxy (X| » X2 ’13)
Since the process x(r) is Gaussian, Xj, X2, X3 are jointly Gaussian with identical variance

(021 =0l = 0’2‘3 =R (0)= 1). The covariance matrix is:

X X2
|
=XxyXq = x(r) x(r +1 l)=-
0',2(‘ Oxxg  Txpxs Oxjxy = Oxpxy = X1X2 (x(t+1) =R .
1
K =|0oy,x a',z‘2 Oxyxs | AlSO Oxyxy =Oxyxy =X2X3 = x(t +1) x(t+2) = Ry(1) = -
2
6)(3)(] ax;xz 0x3 dxp(; = ax3X| =X|X3 = X(I) X(I +2) = x(z) = _1-2-
e

s$0
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1

K=|-

|
— N QN‘__

Q|— - ® |-

1
Le?

—
—

1
App=B33=1-—5 andApy = Ay =83 =483 =—3=7
e

e3 e
And
) 1 '??Aii xix;
Pxyxaxy (x,x2x3) = (2”)3/2J"E|e
14.3-1 '
-———’_— : —— P S— L S W
s' h P Q A ! 5”
Fig. S14.3-1
P(Clm) = Prob(nl < %) and P(Clmm ) = Prob(nl > -_—;-)
() = P(Cms) == P(Clrg-1) = Proe{ i <
Hence
af2 a
plcim) = P{Clma) =y | ¢ i = - =)
and
_ 1 af2 "“H L a
P(thz) = P(Clﬂl3) =..... P(qu-l) = m .‘j;ze N dnl =1 24m)
Hence

Pou =1- P(C)

= 1-[P(m|)P(C|m;) + P(my) P(Clmy )+.....+ P(m ) P(Clrmy )]
a 2(M-1) a \
e )| 5 )

2 2 2
-1
The signal energies are (tg) , (ts—a-) , ......(:t—M—-—a)
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Hence the average pulse energy Eis

4 4 4
M-2
2N (M-l
-mé,‘z“”) ST
— (M2—1)02
loga M 12logy M
Hence
o _AM-1) | [6llogz M) Ev
MM \(Mz—l) N
Which agrees with the result in Eq. (13.52¢) s S| 5 S4
LIPS .
14.3-2 P(C]ml) = P(Cl}n‘) = P(qu) = P(qms) : & ‘vﬂ,-" .
P(Clmy) = P(Clmy) = P(Cmg) = P(C|m *._O:Q o i o
(Cla) = P(Clms) = P(Clne) = P(Cl) s ialsyi

P(Clm) = p(n, <L >—) |
[ Q(Jziw'][ Q(m)][ )

._.

and
-—[P (Cm)+ P(Clma)) = [l Q(:/%ﬂ')] [2 30(7%5]]
et~ 17 )
¢ t=Typ | re, g ]
§ ! | NP
) ! | i::f::-& rss A5 }";"S‘e:‘:"ri

*®

¥
[ ]
®
N
iy
Sy
)

] ¢2lt> , S la rges t
J
t .

Fig. S14.3-2
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The average pulse energy Eis

S ERE]

This performance is considerably better than MASK in Prob. 14.3-1, which yields

P =1750 ["Ozsij ]for M=8

14.3-3 In this case, constants a;'s are same for k=1, 2, ..... M. Hence, the optimum receiver is the same as that
in Fig. 14.8 with terms a;'s omitted.

We now compare 7 -85y, F-52, -.---F"SM -

Since r-s; = JEr cosé; is the angle between 7 and s; , it is clear that we are to pick that signal s; with
which 7 has the smallest angle. In short, the detector is a phase comparator. It chooses that signal which is
at the smallest angle with 7.

14.3-4 Because of symmetry,

P(Clm) = P(Clmy) =....= P(Cimu) Nzt
where M =2N 4——*——*—-’—5
d -d

Sy=3 or —

and E=Ey=..=Ey=—=E * T ° N=2

Let - >
S = (—d -d -d ) . . .

Then

Fig. S14.3-4
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and

P(C)= P(Clmy)

|

Here, M =2" . Hence, each symbol carries the information log; M = N bits.

Hence

and

14.3-5

Fig. S14.3-5
2d 2

Ficm)- Fc) =Pl -] =1-d| |

P(Clmg) = Prob (|ny| < M) = l-ZQ(J.—‘-‘—__—)
P(C) =2 P(clmo)+ 5 P(Cm) +5 P{CIm1)

[ ] 277375)]”9(7;%]
{5

- 2
E = 05(0) + 02542 +025d% = 52—

i -25--1:‘2 yimz
=1 MO0 T | T
PcM=l"P(C)
P(C) =5 [P(CIm)+ P(Clm)
P(Clm,) = g [(fn d)lwf]/dl
3d

i A
0

ql n(x/8)®

N | -

Also

Hence

14.3-6

il—

L
N

117



and

14.3-7

-

L %)
T T, .
b
5 €
2
Fig. S14.3-7a
Note that

d, d d, .4
sl=—-2—¢l"'2'¢2s SZ=E¢I+_2-¢2

d d
53 =—2-¢1 "2'¢2’
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N % 1 5,08) i i‘(‘&B “u.) 55 (*j
) A ‘Ffb 1
®  t> t> .1 __t»
‘A—o 1; (o] ‘l‘: TL o I: 'l; toao I ¢ta> |0 T,b ;
VT, »('1"1

Fig. $14.3-7b

(c) P(Clms) = Prob(noise originating from s remains within the square of side —%)

-pl<sTy bal<3)
2
R oo e e At

Pz o] ]

_ 2
We also observe that E , the average energy is E = —5{4‘; ) 04d?
E _04d® 024 . d ,55 55
N N ol 20 72a,,

Therefore P(gms) = 4{ %3—)

The decision region R, for my is shown in Fig. a and again in Fig. C-1. R, can be expressed as the first
quadrant (horizontally hatched area in Fig. C-1) =4;. Thus
P(Clm,) = noise originating from s, lie in R
= P(noise lie in 1st quadrant) ~ P(noise lie in Ay)

and

2
= [l - —L)] - P(noise originating from s, lie in A)
20,

But P(noise lie in 4)) = %[P(noise lie within outer square) — P(noise lie within inner square)] (See

%[ Ao in2|<§3-r(|n.|. |n2|<5§z'2)]
[ ]

119

Fig. C-2)

|-




and

" @4

Fig, $14.3-T¢

Moreover, by symmetry

P(efms) = P(emy) = P(elms) = Pleim)
Hence

Fem = %[::Zl P (“’"l):l A

o {E)- 1)
’ 8 4N
14.3-8
/’ )S "

Fig. S14.3-8
PLC)= 5 S47(cim) = 5[ chm)+ )« it )]

The decision region R, for m (see Figure) can be expressed as

R, = outer square of side d\2 —-i— (outer square — inner square of side d)

= -} outer square of side dﬁ +-3— inner square of side d
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Now P(Clm;) = Prob(noise originating from m lies in R))

=1 P(n lie in outer square) += P(n lie in inner square)
o)t
o] i)

Similarly Rj, the decision region for my (see figure above) can be expressed as

R, = outer square of side dv2 - -;-(outer square — inner square of side d)

&

= %outer square of side d2 --lz-inner square of side d

P(Cimy ) = noise originating from m; lie in Ry

and
) e
2 2
Apod] o)
1& | | > "- : 3; v'.':.;'.':,;\;__ 3
g‘

The decision region R; for m; can be expressed as
Ry=R,4+Rp-Rc

and
P(C{m3) = Prob(noise originating from m; lie in R3)

= P(noise in R 4)+ P(noise in Ry) - P(noise in Rc)

=P(f1l>0 Ina| <d)+ r{lnnl Imal < T)--[’[l“" Ina} < )’P('“"’ '""Z%)]
= N Rl
Al o) o]

]
(SR
-

Lt TRLEEN
:’." .\‘ ‘E L
L me
3 Mi“" l
adae
R Rg




The decision region Ry for mg can be expressed as

Ry=R4-

and

P(Clma) = P(m >=d» 12 > -d)- %{P(Inxl,' |na| <d)- P(\nd: Ina| < %)}

- 42 -4 dofZ)] )]
For any practical scheme 0() << 1, and we can express
[1- kO] =1-2400)

Using this approximation, we have

cim) = Q(T)Q( =)
Ao 1= ) d )
e )4
semger 4ofE) 4

Hence
P(C)= —[ P(Cimy)+ P(Clma) + P(Clms)+ + P(Clma)|
) ) e
Now El d Ez-—Zd E3 =4d de4 =8d
Therefore E=- (a'l2 +2d? +4d2+8dz)=—d2 '
And Ebg_f__sf_
105216 4
T 2
so that _E.Lg_é_:.‘_s.f_
N 4N 16N
Therefore
p(c)=1_2 ’_8._.5;. _3 ’1_9..’31 3 ’2&
2 15 N 4 15N ) 4 15 N
Moreover
ARG RTEARY: (5
15N 15 N 15 N
Hence
3 8 E,
P(C)zl-— ——
( ) 2Q[ 15 JJ}
And
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Pou = 1—P(C)=%Q[,f%%)

Comparison of this result with that in Example 14.3[Eq.(14.57)] shows that this configuration requires
approximately 1.5 times the power of the system in Example 14.3 to achieve the same performance.

14.3-9 If 5, is ransmitted, we have
b,=E+a+fEnl , b_,=-E+a-\ﬁE—n‘
b2=d= Enz , b_z’d—' En2

bk=a+s/_fnk , by=a-JEng

and
P(Cim;) = Prob.(&y > b_y, by, b2, bis b-k)
Note that
b>b irnpliesE+a+JEn1 >-E+a-JEn; or m >-JE
b >b impliesE+a+JEn|>a+JEn2 orn2<JE+n1
by >b_y irnpliesE+a+J_£-nl>a-JEn2 or n2>-(«/f+n|)
Hence
b, > b, and b_, implies -(nl+J—E-)<n2 <(m +JE)
Similarly
b, > b, and b_ implies -(n, +JE)<nk <(n1 +JE)
Hence

P(C\ml)= Pl’Ob.(bl > b—l’ bz. b_z, b3, b._3,"' bk, b.k)
=Prob.[n‘ >-JE, |n2‘<(n1 +JE), l“3l<("1 +,/-£_)’ ey || <(n, +JE)]

Since nj, ny, - ny areall independent gaussian random variables each with variance M/2,

P(Clmy) = [P(nl > —J—E_) P(in2| < +\/—E-)P(|n3| <ny +JE) P(}nk| <np+ JE)]

N-1
1% [ et
TJ_‘J/E “'[If‘(m ) “dn] dn,

Let y= n +JE
N2
B/
1 rt N-1
ag =1-Pcm)=1- = L T (1200 &
E
Also b=m

14.4-1 The on-off signal set and its minimum energy equivalent set are shown in Figs. (a) and (b), respectively.
The minimum energy equivalent set of orthogonal signal set in Fig. (c) is also given by the set in Fig. ().
Hence, on-off (Fig. a) and orthogonal (Fig. c) have identical error probability. The set in Fig. (b) is polar
with half the energy of on-off or orthogonal signals.
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N
N
B a4 9 4 9
2 2 @
S k) ’
Fig S14.4-1
2
1442 Here ¢i()= ?—;coswot=mcosmot a)o=-;l
#5(¢) = Va0 sinwy M
Therefore
() =V20 2(1) | 1=V @2
s2(1) =5 (1) s2=V59,
(=-S5 4) |ss=-59
The vector a = —Zs,-—[f@, J_<‘b1+»/_d>2]——¢2 .
Hence the minimum energy signal set is given by
Sl()'sx(’)-£¢z(') V20 4, )'£¢2() ﬁsmmof
32(‘)=52(‘)—£¢2(‘)=\/5 mm-f—m =noﬁcoswor-l°3£smmox

53(‘)--‘3(’)"£¢2 (1) = =V5 (1) -£¢2( )=--l()\/ic:osmot-zo‘/5

The optimum receiver - a sultable form — in this case would be that shown in Fig. 14.8a or b.

5,

sinwg!

- V20 S,” R '
\s\\ ".."
R_; “,‘,i_;_b_\ R,
3\
5'; Sg_ q-&
Fig. S14.4-2

14.4-3 To find the minimum energy set, we have a = -:-(sl +52+53+854)=-h -6

Hence the new minimum energy set is

s -b-th =T hrm-h B =k d=h-3 8
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Note that all the four signals form vertices of a square because (51 §2), (52 §3), (83 54), and (54 §,) are
orthogonal. The distance between these signal pairs is always 242 . This set is shown in Fig. S14.4-3a.

The signal set is now rotated so as to yield a new set shown in Fig. S14.4-3b.

$®) _ . %, S
| \.._-' —5‘—-‘(5—-’J <
Ty | g T ' compile. > é_,__q"- 9 -? _,.—-"R
——| :' Z':,sgj Vs %_"3
T 13
- 5 e Q, = -0-H5N"
2 ’1’:"1% ¢ q,.z_gq,;: -0-602N Fig, S14.4-3
Observing symmetry we obtain
P(C) = P(Cim) = P(Cimz) = P(Clms) = P(Clma)
=P(n‘>-ﬁandn2>—f2—)
=]1~- ﬁ 2
;2&/2
2 ? 2 : 2
=[1—Q(ﬁ)] =[1-Q(7(ﬁ)] =[1-0(316)]
P, =1-P(C)=1-[1-0(316)]" =158x10"
2 1 1
14.4-4 Sn-mh-m%& mh and 83 m[ﬁ +#]
e @ (e
0¥ Lk ovip| : 5o
¢ 5;_ SI
. = { =
163 t-» @ mie? 1> s (o5

(&) The orthogonal basis set (b) The signal set (&) The minimum energy s&t

14 o / I 4 z
s (9 -3 S,(6 Safd)
2310 . —
° - @ Lo °© 22152 € =
-4 (d> The Minwn energy wa vefoxms
Fig. S14.4-4
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14.4-5

14.4-6

P(Clm3) = P(Clm ) = P| m; < —2—017;) =1- Q[%%z—{-) 1-0(707)
P(Clm,y) = P(ln[ < 515) =1-20(107)
P(C) = %[2 P(Clm)+ P(Clm)] = %[2 ~20(7.07)+1-20(707)]

= 1—%9(7.07)

and

Py =1-P(C)= 539(7.07) =103x107"2

2
Also £1=E3=(-5T}$) =4x1073
2 2 '
1 1 3 0= 1 1 ]
= —a=| + =2x10 E=—-(E +Ey+E3)==x10
(10\/10) (10 10) BB 373

Mean energy of the minimum energy set:

Epin =-;-(2x10'3+0+2x10" )=2x107

w

The use of Eq. (14.76) and signal rotation shows that the minimum energy set in this case is identical to
that in Prob. 14.4-4. Hence the munmum energy set is as shown in Fig. S14.4-4c. this situation is identical

to that in Prob. 14.3-5 with d = m From the results in the solution of Prob. 14.3-5, we have

Also, we are given s,(@) = % = 1075, Hence, N=2x107".

(a) From the solution of Prob. 14.3-5
Py = —Q(7 02)+Q(7.12) =109 x 10712
(b) and (c) identical to those in Prob 14.4-4

(a) The center of gravity of the signal set is (s +52)/2
Hence, the minimum energy signal set is
(s1+82) _3-%2 (s1+52) 33—
=8 - = & =89 = =
X =8 ) 2 X9 =82 2 2
The minimum energy signals are

x,(t) = 05-0.707 sin"’—2°’-

xq(t) = 0707 sinl‘iz‘i 05

g = 20007

0.001 ol 2 s
® E =] (05-0.707 sin-L) dr = 0.4984 x10”
0

= Ex, — 04984 x 10~5 . We are given M =5x107°

’25
Q[ "] O(4.465) = 041x107°



(¢) We use Gram-Schmidt orthogonalization procedure in appendix C to obtain

»(r)=5(1)

00
[V2sinwot dt
-0 - Gsinog-22
ya(t) = J2sinwgt m 2sinwgt -~
5, yl

I.P1|
=,} 24 = 001 iy =—2be =316
l)'ll fyl N T(‘)O=l Y1

¥3 (r =1-cos2wyf --s-smwot +-§—

lyZl J y%di—“%l l"—— » =T_-—_-J‘-72.2y2
001 1-

1 . -
S)(l) = -3T6'y|(l) =.03l6y1(1)

1 . 1 . . R
f) = — — (1) = .
52(1) 72_7}'2(')'*35‘1)'1(') 01385, (1)+.02855(¢)

salt)
S V2 § ©
Yt 125,
\ .00!
— - — —
p.ocl &= 000y t=> _ e.oot t* g
-2
f
A
o e @2
o.°’38 tcives s s st B sa e v Sose 5
. : s'
et
l 0. 0288 00216 3‘

Fig. S14.4-6
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Chapter 15

1511 P =04, , =03, P =02and 5 =0l

H(m)=—(R log P+ Py log P + Pylog Py + P4 log Ps)
=1.846 bits (source entropy)

There are 10° symbols/s. Hence, the rate of information generation is 1846 x 10° bits/s.

15.1-2 Information/element = log; 10 =332 bits.
Information/picture frame = 332 x 300,000 = 9.96 x 10° bits.

15.1-3 Information/word =log; 10000 =133 bits.
Information content of 1000 words = 133 x 1000 = 13,300 bits.

The information per picture frame was found in Problem 15.1-2 to be 9.96 % 10° bits. Obviously, it is not
possible to describe a picture completely by 1000 words, in general. Hence, a picture is worth 1000 words
is very much an underrating or under;tating the reality.

15.1-4 (a) Both options are equally likely. Hence,
1=1og(gs) = 1 bit

(b) P(2 lantemns) = 0.1
1(2 lanterns) = log10 = 3.322 bits

15.1-5 (a) All 27 symbols equiprobable and P(x;) = Yr-
Hy(x) = 27(35 log; 27) = 4.755 bits/ symbol

(b) Using the probability table, we compute

27
H,(x)=-Y P(x;)log P(x;) =427 bits/ symbol
i=l

(¢) Using Zipf’s law, we compute entropy/word H,(X).

8727
H,(x)=~ 2 P(r)log P(r)

r=1

8727
=- 3 U jog(2l) = 9.1353 bits/ word.

r=1
Hletter =11/82/5.5=2.14 bits/symbol.

Entropy obtained by Zipf's law is much closer to the real value than Hj(x) or Hz(x).
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152-1 H(m)= ZP logP == blts

i=]

Message mabLility Code s & s; s
m, 12 0 172 0 12 0 12 172 0
m; 1/4 10 1/4 10 1/4 10 1/4 1/4 i2 1
m; 1/8 110 1/8 110 178 110 1/8 1/4 ll
m, 1/16 1110 1/16 1110 1/16 lll

ms 1132 11110 1732 11110 1/16
m 1/64 111110],_.1/32 1111

m; 1/64 111111

1110 1/8
1111

L=TRL=; S0)+7 (2)+—(3)+—-(4)+—(S)+3%(6)+314-(6)

= -:—: binary digits

H(m) 100 = 100%

Efficiency =

Redundancy y = (100-17) = 0%

7
15.2-2 H(m)=-Y P, log P, = 2289 bits

i=l

= 2289 _ 14442 3-ary units
logy 3
Message  Probability Code s Sz
m, 173 0 173 0 173 0
m, 173 1 173 1 173 1

me 1/27 221

m; 119 20 19 20 13 2
m, 1/9 21 19 21
m 127 zzo]_, v 22

m, 1727 222

L=TRL =30 L+ 3@+ 5@ 4350

i=]
= % 3-ary digits
=1.4442 3-ary digits

Efficiency ”_ﬂlj_n-)"-'::z; x 100 = 100%

Redundancy y = (1-n)100=0%
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4
1523 H(m)=-3 P log F; =169 bits

i=1

Message  Probability Code s
m, 0.5 0 ]
m, 0.3 10 0.3 ]._. o 5 1
m; 0.1 110 r—o 0.2 11
m, 0.1 111

L= PL; =05(1)+03(2)+01(3)+01(3) = 17 binary digits
Efficiency n= ”(Lm) x100 = li%? x 100 = 992%

Redundancy y = (1-7)100=08%

For ternary coding, we need one dummy message of probability 0. Thus,

Message - Probability Code S,
m, 0.5 0 0.5 0
m, 0.3 1 03 1
m, 0.1 20 0.2 2
m, 0.1 21
ms 0 22
L =05(1)+03(1)+01(2)+0.1(2) =12 3-ary digits
H(m) = 1.69 bits = —ﬁ = 10663 3-ary units
log; 3
Efficiency 7= (L'“) %100 = 12563 0663 < 100 = 88.86%
Redundancy y = (1-7)100=1114%
15.24
Message " Probability  Code s s;
m; 12 0 172 0 12 0
m; 1/4 1 1/4 1 1/4 1
m; 1/8 20 1/8 20 1/4 2
my 1116 21 1/16 21
ms 1/32 220 1/16 22
mg 1/64 221
m, 1/64 222

L=Y PL =%% 3. ary digits

From Problem 15.2-1, H(m) = -:% bits = 1242 3-ary units

. H(m) 1242
= 00= 100 = 94.63%
Efficiency n T x1 3125 x b

Redundancy y = (1-)100=537%
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15.2.5

——

Message Probability  Code s S S3

m 173 1 13 1 173 1 173 1 13 1 2/3
m; 173 00 13 00 173 00 3 00 13 00 13
m; 1/9 011 179 011 179 o1l 2/9 010 13 01

my 19 0100 1/2 0100 1/9 0100 179 01l

ms 127 01010 127 01010]-—9 1/9 o101

mg 1727 010110 227 01011

m, 127 010111

L=YPRL = % =2.4074 binary digits

H(m) = 2289 bits (See Problem 152-2).

Efficiency 1= i(Lﬂ‘lx 100 = %x 100 = 9508%

Redundancy 7 = (1-7)100 =4.92%

15.2-6 (a) H(m) = 3(4 log3) - 1585 bits

(b) Temnary Code

Message  Probability  Code

m, 173 0
m; 173 i
ms 173 2

1 1 1
==(D+— (D= - igi
3()+3(I)+3(1) 1 3-ary digits

H(m) = 1585 bits = l—ls-g%ﬂ 3-ary unit

g2

H(m) . 100 = 100%

Efficiency 7=

Redundancy » = (1-7)100=0%

(c) Binary Code

Message Probability Code S

m, 173 T @23 O
m, 113 00 1”73 1

L= %(1)«»(2)%(2) = % = 1667 binary digits

. H(m) 1585
=2 % 100 = —— x 100 = 95.08%
Efficiency 7 T x 1667 x1 5.08%

Redundancy y =(1-m)100= 492%
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(d) Second extension — binary code

1 1 1 29 . . .
L= 5[(7)(;)(3) +(2)(;)(4):l kT 1.611 binary digits

H(m) = 1585 bits

H(m) 1585

Efficienc 100 = —— x 100 = 98.39%
iciency 7=~ X Tl 3

Redundancy y = (1- 7)100=161%

Message Prob a!de s 8 3y
T v B ] R T R ] b7 )] ™ o m
mm; 19 0000 1”00l » 10 Py, ) 10 w 10 l/3 ]J’
mmy 19 0001 15 0000 7] 00} 29 it 29 1 ]
mym, ” 110 19 0001 19 0000 1% 001 29 000
mym; " 11 w1 19 0001 19 0000 1% 001
mym, 19 100 wooom w10 19 0001
mm, 19 101 9 100 1w
mym; 19 010 w10
mam, 19 o011
15.4-1 (a) The channel matrix can be represented as shown in Fig. S$15.4-1

P(3») = P(nlx)) P(xy) + POl x2) P(x2)

_21, 12 13
33 103 45
P2 =1- PO =5
P=
(b) H(x)= P(x})log Per )+P(X2) og P(x)
1 2 3 .
=-3-1ng 3+§log2-£=0.918 bits
To compute H(x|y) , we find
POix))P(xy) _ - P(yy|x))P(x1) _ 5
P(xjln)= T8 l3 P(xyly2) POra)
P(yilx;) P(x;) P(yy|x2)P(x3) _ 54
P{ixaly) = —-—L—J-P(y) 3 P(x3|y»2) = _JJ__PU )
1 1
H = P log ————+ P log ——
(xly1) = P(x;ly;)log P(xlly|)+ (x21y1)log )
10 13 3 13
ﬁlogzl—o E|0g27—0779

i
P l P,
P(x | 5 Pyl 5

5 32 5 64
==} _.+.._| —=0624
2 082 5 082

H(xlyy) = P(x1|y)]og
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and
H(xly) = Pn)H(xin) + P(y2)H(xly2)

13 32
= —(0. —=(0.624) = 0.6687
45(0779)4-45(06 )

Thus,
I(x|y)= H(x)- H(x|y) = 0918 -0.6687 = 024893 bits/ binijt
13, 45 32, 45 .
H POyl 22 log— + == log— = 08673 bits/ bol
= Z (y.)osp(y) 2583 25832 sym
Also,

H(ylx) = H(y)-1(xly) = 08673 - 02493 = 0.618 bits/ symbol

15.4-2 The channel matrix P(y;|x;) is

(P) %, ——=, (P

1 oxi 0 b
Q
»lo p 1-p (®) X2 < Yo (&)
01l-p p | P
—— (&
Also, P(y;)=P, P(y2)=P(»3)=0Q (Q) & \b Y3 )
Now we use P(x;ly;) = -—Zf% to obtain Fig. S15.4-2
- i Jiri
X;
1 0 0
P(x;|y;) matrix as Yj 0 p 1-p
0 1l-p p

H(x) =3 P(x;)log

1 . 1o
o) =-Plog P-2QlogQ with (2Q-.1 P)

= -—[Plog P+(1- P)log(‘;z’:)] =Q(P)+(1- P)
1
H P(y;)P(x;ly;)log———
(xly) = ;%‘. (y;)P(xily;)log PG
= Plog] +4plog—l—+(l-p)log—1——]+ 4(1—p)log-—‘-+plogl]
P 1-p I-p P
=0+200(p) = (1- P)Q(p)

1(x}y) = H(x)- H(xly) = Q((P)+(1- P)-(1- P)Q(p)
=Q(P)+(1- P)[l—Q(p)]

Letting B = 2P or Q(p) = log
l(x[y) Q(P)+(1- PX1-log B)
—l(xly) =0 or ——-[Q(P)+(1 PX1-log8)]=0. Thxsmeans
EF[PlogP+(l-P) ~(1- P)log(1- PX1-log &) =0
logP-log(l-P)+[l—logﬂ]=0
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Therefore log-l% =-l+logh

Note: -1+logy f=-l0g2+ log; B =log; -‘g;

P B B
Pun— P=_——- -P=
—Pp-2 | B2 ad1-P=202

SO

- P ok B+2
C = MAX I(xly) p+2l°g + log

18.4-3 Consider the cascade of 2 BSCS shown in Fig. S15.4-3. In this case
P =(1- RX1- F)+ ARy =1-Fi- B~ 2AR
PO =(1- AP + P(1- R)=PR+P-2RP

Caseade o

k- bsc.s,2 \ o
—eeet MH-I M ‘ LL)

Fig. S15.4-3

Hence, the channel matrix of the cascade is

\-n-m-2RR A+R-2AR | [1I-A R )-8 Pz]
R+ P -2RP 1-A-R-2RP) A 1-A

This result will prove everything in this problem.

(a) With A=hA = P,, from the above result it follows that the channel matrix is indeed M2
(b) We have already shown that the channel matrix of two cascaded channels is M M;.

(c) Considera cascade of k identical channels broken up as k-1 channel cascaded with the k™ channel.
If M, is the channel matrix of the first k-1 channels in cascade, then from the results derived in part ®),

the channel matrix of the k cascaded channels is M = My M. This is valid for any k. We have

aiready proved it for k = 2, that My = M 2. Using the process of induction it is clear that My = M.
We can verify these results from the development in Example 10.7. From the results in Example 10.7, we
have, for a cascade of 3 channels

1- P =(1-P) +3P2(1-P)
=1-3P, +3P =P} +3P} -3p}
=1-3P, +6P2 -4F}
and
p. =3P, —6P2 +4P}
E~"e [] e
Now
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M3=[1-P, P, ]’g[n-(sp,-eaznpﬁ) 3p,-5p,2+4p,3]

F, 1-P] |3p,-6P2+4P> 1-(3P, -6P2 +4P%)
Clearly
P =3P, -6P2 +4P}
which confirms the results in Example 10.7 for k = 3.

(d) From Equation 15.25

1 1
C_, =1 -[PE logFE—-b(l- PE)log-l—_—;;-]

where Pg is the error probability of cascade of kidentical channel.

We have shown in Example 10.7 that
k k! . .
Pe=1-[(1-P)* + ——PpJa-P)
£ [ ¢ ,,‘2:,4_6;!&—;)! e
If kP, <<1, Pg =kP,
and

1 1
C_, = l—[ch log;—P‘—+(l—kP,)log ]—kP‘]

15.4-4 The channel matrix is

| ¥ Y2 Y3 Let
X 9 0 p g=1-p X]=0 »=0
x 9 p x =1 y2 =1
»=£E

P(») = P(xp.y1)+ P(x2,01) = P(x))POnlx) + P(x3)P(nix2)
1
2

] q
—(0)=1
q+2() 5

P(y5) = P(x,y2)+ P(x2,y2) = P(x}) P(yalx1) + P(x3)P(y2lx2)

P(y3)=1-P(n)-P(y2)=1-q=p
Also,

P(xlly.)=ﬂ’-'},—"gl—‘;‘-’ﬂl=§-//%=n
P(x;lyl)=-’1‘lll;-‘g£32=o
P(xily2) = Poain)An) }l,:y);(x oo

Plagly) = 22 2|P’:y)2';(’2) - %— =1

Plxilys) = 22xE) ,',’;'y’a‘;“ ) =£f-=%

P(leJ's)=-’;(le-P%);—§(-{ﬁ=£}/-’-2-=-;—
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P(x1, ) = ) POrl) =
P(x;,y2) = P(x) P(yalx) = 0
P(x1,y3) = P(x)) P(¥3}%1)
P(x3,y) = P(x3)P(nl|x2) =

s

|l

P(x3,y2) = P(x)P(»2lx2) =

N e oW

P(x2,y3) = P(x2)P(31¥2) =

Therefore,
H(x) = = P(x))log P(x;) - P(x4)log P(x2) ) .
1.1
—-i-+-2-—1
o1
H = P isYj l :
(xly) ;%‘. (xi,y ;)08 PGi))
-4 1 1 LI
= 2(0)+0+2p+0+2qx0+ 2p P
I(xly) = H(x) - H(xly)
=1~ p bits/ symbols
1 1
15.4-5 H(xlz)—H(xly)-zzl’(x,-,zk)log PO k)-%%P(x,,y,)log Pl
1
= P 1y ) l - P i ’ l
§§§ (x; Yj Z)log 5= P(x ‘ ) ;%g (xi Yj 2 )log ———— P(x; l}’))
P(x;ly;)
= P(x;,y;.2x)10
=ZZE PG Ry
Note that for cascaded channel, the output z depends only on y. Therefore, X Y
P(zxly i) = P(ely)) ~—> - y
By Bayes’ rule
P(xilyj2e) = P(x;ly;) Fig. S15.4-5
and
P(x.l)’,.zk)
H H P(x;, vz l08————
(x|z)- H(xly) = g?g (xi, Y5 zx)log P(5lze)
_ (xllyjszk)
‘%gp(yj,zk)[zp(xllyj’zk)k’g P(x; 1) ]

It can be shown that the summation over x of the term inside the bracket is nonnegative. Hence, it follows

that
H(x|z)- H(x]y) 20

From the relationship for /(xly)and 1(x|z), it inmediately follows that
I(x{y) 2 I(x]2)
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15.5-1 We have H(x):jﬁ’plog%dx#ﬁl—plogpdr and j_‘;lpdx=1
Thus,
oF
F(x,p) =-plog p and i ~(1+logp)

¢)(x,p) = pand i)ﬂ-=l
op

Substituting these quantities in Equation 15.37, we have

-(1+log p)+a, =0z p=e™"!

and
[ pae = [M e dx = 2M(e7!) =1
Hence,
e = L and p(x) = L
2M 2 M
Also,

H) = [M p(x)log—— dx = Mmlog2Md:-log2M

P()

1852 Wehave H(x)=-[Cplogpdx,  A=|gxpd,  1=[7 pd

F(x,p) = -plog p and f;§=-(l+logp)

$,(x,p) = pxand —ﬂ-x
$2(x,p)= pand %=
/4

Substituting these quantities in Equation 15.37, we have

~(1+logp)+ax+az =0
P 1 2
or
p= ealx-c-az-l - (eaz-l)eapr
Substituting this relationship in earlier constraints, we get
Hence,

1= J“P&'Ioeaz'le""dx-——-———‘ear eV =—a
=Jo p=ly = 1

o p = e
=~-a|€

and
1
A= de = [ —axe*¥dx =
jo xp Io 1x al
Hence,
a = ~L andem = —ay=A
A
so
1, %
—e x20
p(x)={4
0 x<0

To obtain H(x)
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H(x) = - [ p(x)log p(x)dx = I p[- log 4 --j-:—loge] dx

= log Af plx)a + B2 xplx)ce
= log A +loge = log(eA)

15.5-3 Information per picture frame = 9.96 x 10° bits. (See Problem 15.1). For 30 picture frames per second, we
need a channel with capacity C given by

C=30x996x10° =2.988x107 bits/sec.

But for a white Gaussian noise

S
C = Bl 14—
°g( N)

We are given % =50 db = 100,000 (Note: 100,000 = SO db)

Hence,
B=18 MHz

15.8-4 Consider a narrowband Af where &/ —» 0 so that we may consider both signal noise power density to be
constant (bandlimited white) over the interval Af . The signal and noise power Sand N respectively are
given by _ '

§=25,(w)Af and N= 2S,(w)4f
The maximum channel capacity over this band A/ is given by

Coy = & log [S+ N]’Mlog [s,(w)+s,,(w)]

N Sq (@)
The capacity of the channel over the entire band (), f3) is given by

P PESE P

We now wish to maximize C where the constraint is that the signal power is constant.
Zj'fflz S(@)df =S (aconstant)
Using Equation 15.37, we obtain

_g_log .S_Lf_sl.l. +a§l=0
agS sﬂ as’

or
Ss +8, = --1— (a constant)
a
Thus,
S(@)+Sa(@) = ——
a

This shows that to attain the maximum channel capacity, the signal power density + noise power density
must be a constant (white). Under this condition,

oy, [S0455@)) oy (g [
C=jf‘2 log[ S,.(a); ]dj’-—jjl2 log[ mS’n(m)}df

(- flog (— %)- 108 [s, @]
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= Blog [5,(@)+ Sa(@)]- [£*log [Sa(@)] df
15.5-5 In this problem, we use the results of Problem 15.5-4. Under the best possible conditions,

C = Blog [5,(@)+Sa(@)]- | f log [Sn(@)]df
constant

We shall now show that the integral 2 log [S,(@)]df is maximum when Sp(w) = constant if the noise
fl n

is constrained to have a given mean square value (power). Thus, we wish to maximize
[ 10 [s, (@) df

under the constraint
2 jfl’ log [Sp(@)]df = N (aconstant)
Using Equation 15.37, we have

or

and

Sp(w) = --:; (a constant)

Thus, we have shown that for a noise with a given power, the integral
S
7 1og [Sn(@)]df

is maximized when the noise is white. This shows that white Guassian noise is the worst possible kind of
noise.
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16.1-1

16.1-2

16.1-3

16.2-1

16.2-2

Chapter 16

3

22 3 (2) (B)+(?)+(F)+7)
j=

20482 1+23+23x11+23x77=2048

(a) There are (7) ways in which j positions can be chosen from n. But for a ternery code, a digit can
be mistaken for two other digits. Hence the number of possible errors in j places is
N { ] .
(3)3-1 or 323 T T/ 32 X (7)2/
j=0 jso
(b) (11,6) code forz =2
P2 (2,‘)+({‘)2+(5‘)22 = 14224220 =243

This is satisfied exactly.

For (18,7) code to correct up to 3 errors
22 2 () or 2" 2()()+(F)+()
j=0

18! 18! 18!
—_—t——
17t 216! 3! 15!

=1+18+153+816=988

2! = 2048
Hence
3
2> ()
er)

Clearly, there exists a possibility of 3 error correcting (18,7) code. Since the Hamming bound is
oversatisfied, this code could correct some 4 error patterns in addition to all patterns with up to 3 errors.

GHT =[1, P] [P ]
Iy
=POP
=0

¢ = dG where d is a single digit (0 or 1).
Ford =0

e=0[t11]=[000)]
Ford =1

e=1[111]=[111]

140



162-3 ¢ =dG where d is a single digit (0 or 1).
Ford =0
c=0{11111]=[00000]
Ford =1

e=1f11111]=[11111]
Hence in this code a digit repeats 5 times. Such a code can correct up to two errors using majority rule for
detection.

1624 0 is transmitted by [0 0 0] and 1 is transmitted by 11 1]
(a) This is clearly a systematic code with

G=[111]
16.2-5 (a)
100 - 01 1
010 01 1
G=l........ P= Note that m=1
000 -:11 |
Iy I 4
(b)
Data word Code word
0 0 0/0 0 0 O
o 0 110 0 1 1
o1 0/0 1 0 1
o 1 1l0 1 1 0
1 0 o1 0 0 1
1 o 1|1 0 1 O
1 1 01 1 0 O
1t 1 11 1 1 1

(¢) This is a parity check code. If a single error occurs anywhere in the code word, the parity is violated.
Therefore this code can detect a single error.

(d) Equation (16.92) in the text shows that cHT =0.
Now
r=c®e
and
HT =(cOHT =cH @eHT =eH'
If there is no error e =0 and
rHT =eHT =0
Also

HT =L‘; ] Butsince m=1, I, =[1]
m

and
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If there is a single error in the received word 7, e has a single 1 element with all other elements being 0.
Hence
rHT =eH T -1 (for single error)

16.2-6

Data word Code word

9 0 0|0 0 0 0 0 O
o 0 1|1 1.0 0 0 1
o 1 0/1 11 0 1 0
o1 1/0 0o 1 0 1 1
1 o0 0{0 1 1 1 01
1 0 11 0 1 1 00
{ 1 0|1 0 06 1 11
1 1 161 0 1 10

From this code we see that the distance between any two code words is at least 3. Hence dpin =3.
16.2-7

Data word Code word

o o0 0/0 0 0 0 0 O
o 0 1/0 o 1 1 10
o1 0|0 1 01 01 Observe that dpin =3
o 1 1{0 1 10 1 1
1 o ol1 0 06 0 1 1
1 o 1|1 0 1 1 01
1 1 01 1. 0 1 1 0
1 1 1t 11 0 00

162-8 HT isa 15x4 matrix with all distinct rows. One possible H T is:

'1111'\
1110
1101
1100
1011
1010
1001
HT =|0011 =[f}

0111 m
0110
0101
1000
0100
0010
000 1]
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(100000000001 111]
010000000001110
001000000001101
000100000001100
000010000001011
G=[I,P]=[000001000001010
000000100001001
000000010000011
000000001000111
000000000100110
1000000000010101]

Ford=10111010101
c=dG=(10111010101]G=101110101011110

162-9 (a)
[111]
11
100111 10?
G=|oto110 & HT=]00
001101
e 3 010
001]
(b)
Data word Code word
o 0 00 0 0 0 0 O
0 0 1/0 0 1 1 0 1
0 1 0{0 1 0 1 1 O
0 1 1o 1 10 1 1
1 o 0o|l1 0 0 1 1 1
1 0 1{1 010 1 0
1t 1 0/1 1 0 0 0 1
1 1 1/t 11100

(c) The minimum distance between any two code words is 3. Hence, this is a single error correcting code.
Since there are 6 single errors and 7 syndromes, we can correct all single errors and one double error.

[t ) s=eHT

00O O
OO0
COO0OO=OO
-0 0O O O
OO OO0
O OO0
OO O et
L - -
-t OO D -

143



(e)

r s e d
101100 1100 010000 111100 111
000110 110 010000 010110 010
101010 000 000000 101010 101
16.2-10 (a) done in Prob. 16.2-7
[011]
101
110
b) H =
® H 100
010
001
e s
100000 011
010000 101
six single errors 001000 110
000100 100
000010 010
000001 001
1 double error 100100 111

16.2-11
1000101
0100111
G=[1Pl=l 5010011
0001110
c=dG

144



16.2-12

16.2-13

- 1r c 1

0000 0000000
0001 0001110
0010 0010011
0011 0011101

L%

o100/ [0100111 [101]
0101| |o0101001 111
o110| lot10100 0t1
o111| |o111010 HT=|110
1000{ (1000101 100
1001 1001011 010
1010} }1010110 001]

1011 |1011000
1100} [1100010
1101 |[1101100
1110 1110001
[1111) [1111111]

s=eHT

. - - -

¢ s
0000001 [001
00o00010| (010
0000100| [100
0001000 {110
0010000} {011
0100000( [111
1000000] [101]

s=rH T where r = received code
c=r®e
¢ = corrected code

We observe that the syndrome for all the three 2-error patterns 100010, 010100, or 001001 have the same
syndrome namely 111. Since the decoding table specifies s =111 for e = 100010 whenever e =100010
occurs, it will be corrected. The other two patterns will not be corrected. If for example e = 010100
occurs, s =111 and we shall read from the decoding table e = 100010 and the error is not corrected.
If we wish to correct the 2-error pattern 010100 (along with six single error patterns), the new decoding
table is identical to that in Table 16.3 except for the last entry which should be
e s

010100 111

From Eq. on P.737, for a simple error correcting code
2"k 5 pilor 2782041 - n-82logy(n+1)

This is satisfied for n 212 . Choose n=12. This givesa (12, 8) code. H T is chosen to have 12 distinct
rows of four elements with the last 4 rows forming an identity matrix. Hence,
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16.2-14

The number of non:
able to correct 3 double-error patterns.

s
0000
0011
0101
0110
0111
1001
1010
1011
1100
1000
0100
0010
0001
1111
1110
1101

——000Oo0o

1
0
1
1
0
1

O et oamt O et

0
1
1
1
0
0

1011
1100 )
1000 ]
0100

oo1o0
0001

74

e
000000000000
100000000000
010000000000
001000000000
000100000000
000010000000
000001000000
000000100000
000000010000
000000001000
000000000100
000000000010
000000000001
100000010000
001000001000
000000010001

Data word | Code word
00 000000

01 011011
10 101110
11 110101

The minimum distance
patterns. Since the code oversatisfies Hamming bound it ¢

3-error patterns.

G =[I, P)

100000000011
010000000101

000100000111
000010001001

000000101011

between any two code words is dmin =4 - Therefore,
an also correct some 2-error and possibly some
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16.2-14

The number of non:
able to correct 3 double-error patterns.

s
0000
0011
0101
0110
0111
1001
1010
1011
1100
1000
0100
0010
0001
1111
1110
1101

——000Oo0o

1
0
1
1
0
1

O et oamt O et

0
1
1
1
0
0

1011
1100 )
1000 ]
0100

oo1o0
0001

74

e
000000000000
100000000000
010000000000
001000000000
000100000000
000010000000
000001000000
000000100000
000000010000
000000001000
000000000100
000000000010
000000000001
100000010000
001000001000
000000010001

Data word | Code word
00 000000

01 011011
10 101110
11 110101

The minimum distance
patterns. Since the code oversatisfies Hamming bound it ¢

3-error patterns.

G =[I, P)

100000000011
010000000101

000100000111
000010001001

000000101011

between any two code words is dmin =4 - Therefore,
an also correct some 2-error and possibly some
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(®)
[1110]
1011
1000

T-—- = T
H 0100 and s=eH
0010

10001]

100000 | 1110
010000 | 1011
6 single error patterns 001000 | 1000

000100 | 0100
000010 | 0010
(000001 | 0001
110000 | 0101
1010003 0110
100100 | 1010
7 double-error patterns 100010 | 1100
100001 | 1111
011000 | 0011
l 010010 | 1001

2 triple-error patterns { : g ?: (l) : ? : ‘l) :

16.3-1 Systematic (7, 4) cyclic code
glx)=x+x+1

Fordata1111  d(x)=x" +x? +x+1

2 6, .5,,4,,3

x3(x3+x +x+l)=x +XT+X +X

P +x?+l

x3+x+l J:‘5+-J:"’-o—.r“+1c3

x6 -9'.::4 +x3

x3

Xs +x3+12

x3+x2

2 +x+1

x2+x+l

e(x) =(x3 +x+l)(x3+x+l)=x6
The code word is 11111111

s, 4.3 .2

+x°+x +x" +x+x+1
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For data 1110 d(x)=x3+x2+x

x3+x+l x°+x +Xx

xs +x3+x2

x2

The code word is 1110100
A similar procedure is used to find the remaining codes (see Table 1).

(b) From Table 1 it can be seen that the minimum distance between any two codes is 3. Hence thisisa
single error correcting code.

d c
1111 ( 1111111
1110} 1110100
1101} 1101001

1100 ( 1100010
1011 1011000
1010 | 1010011
1001 | 1001110
1000| 1000101  Tablel
01110111010
0110 0110001
0101 0101100
0100 0100111
0011 0011101
0010 | 0010110
0001 | 0001011
0000 | 0000000

(c) There are seven possible non-zero syndromes.

x° +x+1
for €=1000000 x3+x+IF6
x84 x4 +x3
e
2 +x2+x
x3+x2+x
P +x+1
x? +1
s=101
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The remaining syndromes are shown in Table 2.

e s
1000000 101
0100000 | 111
0010000 | 110
0001000 | 011 T2k
0000100 | 100
0000010 | 010
0000001 | 001

(d) The received data is 1101100

r(x)-—-J:‘-l»x"’«1»;:3-0—,‘:2
,1:3-o»x+l)x6+xs +x3 +x?
x6  axtasd
Sext 4P
x5 -'-x:’-lr.):2
x4+ 23
x* +x?ex
Baextex
s(x)=x2+l ' x3 x+1
s=101 ——;—Tl
From Table 2
e=1000000

c=r®e=110110081000000=0101100
Hence d=0101

1632 glx)=x" +x0+xT 42840 x4l

o(x) = d(x)g(x)

1.

dl=oooolnxloooo,dﬂﬁ=x7+x°+é+x‘

d,=101010101010, dy(x)=x" +x° +xT 42+ 2P +x

¢\(x) =d\(x)g(x) = AL, S E e e S o T IR

and

c,=00001100011101110010000
t:z(x)=d2(x)g(x)=x22+.1:'8+,\:”<t-::15+.\:'3-0-J:s+:c5+.v:‘-n»:c3+.1:2 +x

and
c2=10001101010000100111110

149



x2+l

2

16.3-3 x+1 +xt+x+l

X3+X2

x+1
x+l

0
Hence :r3+:r2+:|:+1=(::+l)(x2 +l)=(x+l)(x+l)(x+l)=(x+l)3

x‘+x+l
5

16.3-4 el +xt+x? 41 Hence x+x4+x2+l=(x+l)(x‘+x+l)

xs+x4

p ANUEREN-EE

x+1
x+1
0
Now try dividing x* +x+1 by x+1, wegeta remainder 1. Hence (x+1) is not a factor of (x“ +x+ 1) .
The 2™-order prime factors not divisible by x+1lare x? and x? +x+1. Since (::4 +x+ l) is not divisible

by x? , we try dividing by (x2 +Xx+ l) . This also yields a remainder 1. Hence x* + x+1 does not have
either a first or a second order factor. This means it cannot have a third order factor either. Hence

o+ x +x2+l=(x+l)(x‘+x+l)

16.3-4 Try dividing x'+1 by x+1

x6+x5+x‘+x3+x2+x+l

x+lF’+l
7

X +x6

et ——————

x°+l

x6+x5

xS +1

Paxt
x*+1
ex’

x3+l
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Therefore (x7 +l)=(x+l)(x6 sxdextexdea? +x+l)

Now try dividing (x® +x% +x* +x% +2% 42+ 1) by (x+1). It does not divide. So try dividing by
(x*+ 1). It does not divide. Try dividing by (x?+x+ 1).. It does not divide. Next try dividing by
(x* +1). It does not divide cither. Now try dividing by (a® +x+ 1). Itdivides. We find

(x6 +x+xt +x+x? +x+l)=(x3+x+l)(x3+x2 +l)

Since (x3 +x%+ I) is not divisible by x or x+1 (the only two first-order prime factors), it must be a

third-order prime factor. Hence
x7+1 -==(x+l)(x2 +x+1)(x2 +x? +1)

16.3-6 For a single error correcting (7, 4) cyclic code with a generator polynomial
g(x)=x3+x?+1

'xk-l g(x)q
%2 g(x) x3 g(x) xS 4xd
2 5 4 2
1x g(x) - X" +x +X

x g(x)| |xt+xP+x

g(x) x3+x2+1

| &(x)
Hence
1101000
~lo110100
“loo11010

0001101

Each code word is found by matrix multiplication ¢ =dG’

1101000]
0110100
=[000 =0000000
c=[0000] }44y1010 0

0001101]
1101000]
0110100
0011010
(0001101

c=[0001] =0001101
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The remaining codes are found in a similar manner. See table below.

d c
0000 0000000
0001]0001101
0010{0011010
001110010111
0100(0110100
01010111001
011001011190
0111/0100001
1000(1101000
1001 /1100101
1010 (1110010
10311 (1111111
11001011100
110111010001
111011000110
11111001011

163-7 g(x)=x>+x?+1
The desired form is

1000- - -Ohy by by - -+ himy
0100 - -0k hahyy - hmy
0010---0m3hyhy - - - hm

........

0000 - - Vhyhuhy -y

L n 7 ]
(kxk) (kxm)

The code is found by using c=dG
Proceeding with matrix multiplication, and noting that

0+40=0, 0+1=1+0=1, 1+1=0 and 0x0=0, O0x1=1x0=0, 1xi=1

we get
1000110
0100011

cs=[1111] 0010111 =[1111111]
0001101

ca=[1110]G=[1110010]

and so on.
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16.3-8

d

1111
1110
1101
1100
1011
1010
1001
1000
0111
6110
0101
0100
0011
0010
0001

0000

c

1111111
1110010
1101000
1100101
1011100
1010001
1001011
1000110
0111001
0110100
0101110
0100011
0011010
0010111
0001101
0000000

These results agree with those of Table 16.5

(@)

1011000

“|0101100

0010110

0001011
(b) The code is found by matrix multiplication. c=dG’
In general g(x)=gix" " +gax" 4k
For this case gi=) g2=18=0 g =1

Since My = g2, My = &3, Ik = 84

-

0001101

the fourth row is immediately found. Thus, so far we have

Next, to get row 3, use row 4 with one left shift.

0011010

0001101]

The 1 is eliminated by adding row 4 to row 3.

0010111
0001101

Next for row 2, use row 3 with 1 left shift.
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0101110
0010111
0001101

The 1 is eliminated by adding row 4 to row 2.

0100011
~ 0010111
0001101

Next for row 1, use row 2 with 1 left shift.

1000110
0100011
0010111
0001101

This is the desired form.

_¢c 1 d
0000(0000000
0001 (0001011
0010(0010110
0011/0011101
01001]0101100
01010100111
0110(0111010
01110110001
10001011000
10011010011
10101001110
1011 /1000101
11001110100
11011111111
11101100010

11111101001

() All code words are at a minimum distance of 3 units. Hence this is a single error correcting code.

1639 g(x)=x>+x+1. Hencerow4is0001011.

1011000

0101100

0010110

0001011
Row 4 is ok. 0001011 « row 4
Row 3 is left shift of row 4. 0010110 < row3
For row 2, left shift row 3. 0101100
And add row 1 to obtain row 2. 0100111 « row2
For row 1, left shift row 2. 1001110
And add row 1 to obtain row 1. 1000101 « row |
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16.4-1

16.5-1

16.7-1

and
2E;

“

1000101
G- 0100111
oot10110
0001011

The burst (of length S) detection ability is obvious. The single error correcting ability can be demonstrated
as follows. If in any segment of b digits a single error occurs, it will violate the parity in that segment.
Hence we locate the segment where the error exists. This error will also cause parity violation in the
augmented segment. By checking which bit in the augmented segment violates the parity, we can locate
the wrong bit position exactly.

The code can correct any 3 bursts of length 10 or less. It can also correct any 3 random errors in each code
word.

Pr, = kQ({ZE,[N) = 120(v2x912) = 9825 10°¢
e = (?){QUZ%H - (P|eE5iE) - ox72x10”

To achieve a value 9.872 x 107 for Pg, , we need new value E, /N say E}/N. Then

9.872x10'9=kQ( 2—‘-5-"’—)=129( -2-51)
\I N J N

Hence

Q( -25-”-} =08227x107°
‘J N

=603> E_ 1818
N

This means E, /A must be increased from 9.12 to 18.18 (nearly doubled).
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